These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
158 related articles for article (PubMed ID: 25012968)
1. Plant-derived compatible solutes proline betaine and betonicine confer enhanced osmotic and temperature stress tolerance to Bacillus subtilis. Bashir A; Hoffmann T; Kempf B; Xie X; Smits SHJ; Bremer E Microbiology (Reading); 2014 Oct; 160(Pt 10):2283-2294. PubMed ID: 25012968 [TBL] [Abstract][Full Text] [Related]
2. Protection of Bacillus subtilis against cold stress via compatible-solute acquisition. Hoffmann T; Bremer E J Bacteriol; 2011 Apr; 193(7):1552-62. PubMed ID: 21296969 [TBL] [Abstract][Full Text] [Related]
3. Osmotic control of opuA expression in Bacillus subtilis and its modulation in response to intracellular glycine betaine and proline pools. Hoffmann T; Wensing A; Brosius M; Steil L; Völker U; Bremer E J Bacteriol; 2013 Feb; 195(3):510-22. PubMed ID: 23175650 [TBL] [Abstract][Full Text] [Related]
4. Dimethylglycine provides salt and temperature stress protection to Bacillus subtilis. Bashir A; Hoffmann T; Smits SH; Bremer E Appl Environ Microbiol; 2014 May; 80(9):2773-85. PubMed ID: 24561588 [TBL] [Abstract][Full Text] [Related]
5. Molecular determinants for substrate specificity of the ligand-binding protein OpuAC from Bacillus subtilis for the compatible solutes glycine betaine and proline betaine. Horn C; Sohn-Bösser L; Breed J; Welte W; Schmitt L; Bremer E J Mol Biol; 2006 Mar; 357(2):592-606. PubMed ID: 16445940 [TBL] [Abstract][Full Text] [Related]
6. Thermoprotection of Bacillus subtilis by exogenously provided glycine betaine and structurally related compatible solutes: involvement of Opu transporters. Holtmann G; Bremer E J Bacteriol; 2004 Mar; 186(6):1683-93. PubMed ID: 14996799 [TBL] [Abstract][Full Text] [Related]
7. OpuF, a New Bacillus Compatible Solute ABC Transporter with a Substrate-Binding Protein Fused to the Transmembrane Domain. Teichmann L; Kümmel H; Warmbold B; Bremer E Appl Environ Microbiol; 2018 Oct; 84(20):. PubMed ID: 30097444 [TBL] [Abstract][Full Text] [Related]
8. Abiotic stress protection by ecologically abundant dimethylsulfoniopropionate and its natural and synthetic derivatives: insights from Bacillus subtilis. Broy S; Chen C; Hoffmann T; Brock NL; Nau-Wagner G; Jebbar M; Smits SH; Dickschat JS; Bremer E Environ Microbiol; 2015 Jul; 17(7):2362-78. PubMed ID: 25384455 [TBL] [Abstract][Full Text] [Related]
9. The GbsR Family of Transcriptional Regulators: Functional Characterization of the OpuAR Repressor. Ronzheimer S; Warmbold B; Arnhold C; Bremer E Front Microbiol; 2018; 9():2536. PubMed ID: 30405586 [TBL] [Abstract][Full Text] [Related]
10. Lipoprotein from the osmoregulated ABC transport system OpuA of Bacillus subtilis: purification of the glycine betaine binding protein and characterization of a functional lipidless mutant. Kempf B; Gade J; Bremer E J Bacteriol; 1997 Oct; 179(20):6213-20. PubMed ID: 9335265 [TBL] [Abstract][Full Text] [Related]
11. Three transport systems for the osmoprotectant glycine betaine operate in Bacillus subtilis: characterization of OpuD. Kappes RM; Kempf B; Bremer E J Bacteriol; 1996 Sep; 178(17):5071-9. PubMed ID: 8752321 [TBL] [Abstract][Full Text] [Related]
12. Two evolutionarily closely related ABC transporters mediate the uptake of choline for synthesis of the osmoprotectant glycine betaine in Bacillus subtilis. Kappes RM; Kempf B; Kneip S; Boch J; Gade J; Meier-Wagner J; Bremer E Mol Microbiol; 1999 Apr; 32(1):203-16. PubMed ID: 10216873 [TBL] [Abstract][Full Text] [Related]
13. Characterization of a Snorhizobium meliloti ATP-binding cassette histidine transporter also involved in betaine and proline uptake. Boncompagni E; Dupont L; Mignot T; Osteräs M; Lambert A; Poggi MC; Le Rudulier D J Bacteriol; 2000 Jul; 182(13):3717-25. PubMed ID: 10850986 [TBL] [Abstract][Full Text] [Related]
14. Two MarR-Type Repressors Balance Precursor Uptake and Glycine Betaine Synthesis in Warmbold B; Ronzheimer S; Freibert SA; Seubert A; Hoffmann T; Bremer E Front Microbiol; 2020; 11():1700. PubMed ID: 32849357 [No Abstract] [Full Text] [Related]
15. OpuA, an osmotically regulated binding protein-dependent transport system for the osmoprotectant glycine betaine in Bacillus subtilis. Kempf B; Bremer E J Biol Chem; 1995 Jul; 270(28):16701-13. PubMed ID: 7622480 [TBL] [Abstract][Full Text] [Related]
16. High-affinity transport of choline-O-sulfate and its use as a compatible solute in Bacillus subtilis. Nau-Wagner G; Boch J; Le Good JA ; Bremer E Appl Environ Microbiol; 1999 Feb; 65(2):560-8. PubMed ID: 9925583 [TBL] [Abstract][Full Text] [Related]
17. Synthesis, release, and recapture of compatible solute proline by osmotically stressed Bacillus subtilis cells. Hoffmann T; von Blohn C; Stanek A; Moses S; Barzantny H; Bremer E Appl Environ Microbiol; 2012 Aug; 78(16):5753-62. PubMed ID: 22685134 [TBL] [Abstract][Full Text] [Related]
18. Biochemical and structural analysis of the Bacillus subtilis ABC transporter OpuA and its isolated subunits. Horn C; Jenewein S; Sohn-Bösser L; Bremer E; Schmitt L J Mol Microbiol Biotechnol; 2005; 10(2-4):76-91. PubMed ID: 16645306 [TBL] [Abstract][Full Text] [Related]
19. Ligand binding and crystal structures of the substrate-binding domain of the ABC transporter OpuA. Wolters JC; Berntsson RP; Gul N; Karasawa A; Thunnissen AM; Slotboom DJ; Poolman B PLoS One; 2010 Apr; 5(4):e10361. PubMed ID: 20454456 [TBL] [Abstract][Full Text] [Related]
20. Response of Bacillus subtilis to high osmolarity: uptake of carnitine, crotonobetaine and γ-butyrobetaine via the ABC transport system OpuC. Kappes RM; Bremer E Microbiology (Reading); 1998 Jan; 144(1):83-90. PubMed ID: 33757219 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]