These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 25013113)

  • 1. Physiological vagility and its relationship to dispersal and neutral genetic heterogeneity in vertebrates.
    Hillman SS; Drewes RC; Hedrick MS; Hancock TV
    J Exp Biol; 2014 Sep; 217(Pt 18):3356-64. PubMed ID: 25013113
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Physiological vagility: correlations with dispersal and population genetic structure of amphibians.
    Hillman SS; Drewes RC; Hedrick MS; Hancock TV
    Physiol Biochem Zool; 2014; 87(1):105-12. PubMed ID: 24457925
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Physiological vagility affects population genetic structure and dispersal and enables migratory capacity in vertebrates.
    Hancock TV; Hedrick MS
    Comp Biochem Physiol A Mol Integr Physiol; 2018 Sep; 223():42-51. PubMed ID: 29778799
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Walk, swim or fly? Locomotor mode predicts genetic differentiation in vertebrates.
    Medina I; Cooke GM; Ord TJ
    Ecol Lett; 2018 May; 21(5):638-645. PubMed ID: 29527800
    [TBL] [Abstract][Full Text] [Related]  

  • 5. How do rivers, geographic distance, and dispersal behavior influence genetic structure in two sympatric New World monkeys?
    Lecompte E; Bouanani MA; de Thoisy B; Crouau-Roy B
    Am J Primatol; 2017 Jul; 79(7):. PubMed ID: 28346698
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Environmental heterogeneity explains coarse-scale β-diversity of terrestrial vertebrates in Mexico.
    Rodríguez P; Ochoa-Ochoa LM; Munguía M; Sánchez-Cordero V; Navarro-Sigüenza AG; Flores-Villela OA; Nakamura M
    PLoS One; 2019; 14(1):e0210890. PubMed ID: 30682061
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effective limb length and the scaling of locomotor cost in terrestrial animals.
    Pontzer H
    J Exp Biol; 2007 May; 210(Pt 10):1752-61. PubMed ID: 17488938
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fine-scale population differentiation and gene flow in a terrestrial salamander (Plethodon cinereus) living in continuous habitat.
    Cabe PR; Page RB; Hanlon TJ; Aldrich ME; Connors L; Marsh DM
    Heredity (Edinb); 2007 Jan; 98(1):53-60. PubMed ID: 17006531
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Population structure in an endangered songbird: maintenance of genetic differentiation despite high vagility and significant population recovery.
    Barr KR; Lindsay DL; Athrey G; Lance RF; Hayden TJ; Tweddale SA; Leberg PL
    Mol Ecol; 2008 Aug; 17(16):3628-39. PubMed ID: 18643883
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dispersal and the transition to sympatry in vertebrates.
    Pigot AL; Tobias JA
    Proc Biol Sci; 2015 Jan; 282(1799):20141929. PubMed ID: 25621326
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genetic spatial autocorrelation can readily detect sex-biased dispersal.
    Banks SC; Peakall R
    Mol Ecol; 2012 May; 21(9):2092-105. PubMed ID: 22335562
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Population genetic structure and long-distance dispersal among seabird populations: implications for colony persistence.
    Bicknell AW; Knight ME; Bilton D; Reid JB; Burke T; Votier SC
    Mol Ecol; 2012 Jun; 21(12):2863-76. PubMed ID: 22548276
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Voluntary running in deer mice: speed, distance, energy costs and temperature effects.
    Chappell MA; Garland T; Rezende EL; Gomes FR
    J Exp Biol; 2004 Oct; 207(Pt 22):3839-54. PubMed ID: 15472015
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Models and the scaling of energy costs for locomotion.
    Alexander RM
    J Exp Biol; 2005 May; 208(Pt 9):1645-52. PubMed ID: 15855396
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genetic structure within and between island populations of the flightless cormorant (Phalacrocorax harrisi).
    Duffie CV; Glenn TC; Vargas FH; Parker PG
    Mol Ecol; 2009 May; 18(10):2103-11. PubMed ID: 19635072
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dispersal and genetic structure in the American marten, Martes americana.
    Broquet T; Johnson CA; Petit E; Thompson I; Burel F; Fryxell JM
    Mol Ecol; 2006 May; 15(6):1689-97. PubMed ID: 16629821
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genetic and ecological data provide incongruent interpretations of population structure and dispersal in naturally subdivided populations of white-tailed ptarmigan (Lagopus leucura).
    Fedy BC; Martin K; Ritland C; Young J
    Mol Ecol; 2008 Apr; 17(8):1905-17. PubMed ID: 18363666
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Host traits explain the genetic structure of parasites: a meta-analysis.
    Blasco-Costa I; Poulin R
    Parasitology; 2013 Sep; 140(10):1316-22. PubMed ID: 23866918
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genetic structure in a solitary rodent (Ctenomys talarum): implications for kinship and dispersal.
    Cutrera AP; Lacey EA; Busch C
    Mol Ecol; 2005 Jul; 14(8):2511-23. PubMed ID: 15969731
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inferring the effects of potential dispersal routes on the metacommunity structure of stream insects: as the crow flies, as the fish swims or as the fox runs?
    Kärnä OM; Grönroos M; Antikainen H; Hjort J; Ilmonen J; Paasivirta L; Heino J
    J Anim Ecol; 2015 Sep; 84(5):1342-53. PubMed ID: 25981411
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.