These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 25013305)

  • 1. Towards an Automated MEMS-based Characterization of Benign and Cancerous Breast Tissue using Bioimpedance Measurements.
    Pandya HJ; Kim HT; Roy R; Chen W; Cong L; Zhong H; Foran DJ; Desai JP
    Sens Actuators B Chem; 2014 Aug; 199():259-268. PubMed ID: 25013305
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bioimpedance Assessment of Oral Squamous Cell Carcinoma with Clinicopathological Correlation.
    Sarode GS; Sarode SC; Kulkarni M; Karmarkar S; Patll S; Auciustine D
    J Contemp Dent Pract; 2015 Sep; 16(9):715-22. PubMed ID: 26522596
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design and fabrication of a flexible MEMS-based electromechanical sensor array for breast cancer diagnosis.
    Pandya HJ; Park K; Desai JP
    J Micromech Microeng; 2015 Jun; 25(7):. PubMed ID: 26526747
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improving the Electrical Contact Performance for Amorphous Wire Magnetic Sensor by Employing MEMS Process.
    Chen Y; Li J; Chen J; Xu L
    Micromachines (Basel); 2018 Jun; 9(6):. PubMed ID: 30424232
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Label-free multimodal electro-thermo-mechanical (ETM) phenotyping as a novel biomarker to differentiate between normal, benign, and cancerous breast biopsy tissues.
    G K AV; Gogoi G; Kachappilly MC; Rangarajan A; Pandya HJ
    J Biol Eng; 2023 Nov; 17(1):68. PubMed ID: 37957665
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Accurate characterization of benign and cancerous breast tissues: aspecific patient studies using piezoresistive microcantilevers.
    Pandya HJ; Roy R; Chen W; Chekmareva MA; Foran DJ; Desai JP
    Biosens Bioelectron; 2015 Jan; 63():414-424. PubMed ID: 25128621
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A comparison study of electrodes for neonate electrical impedance tomography.
    Rahal M; Khor JM; Demosthenous A; Tizzard A; Bayford R
    Physiol Meas; 2009 Jun; 30(6):S73-84. PubMed ID: 19491443
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Overcoming the Impedance Range Limitations of Portable Bioelectrical Impedance Spectroscopy Clinical Devices.
    Montalibet A; Massot B; Gehin C; McAdams E
    Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-4. PubMed ID: 38082825
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simultaneous MEMS-based electro-mechanical phenotyping of breast cancer.
    Pandya HJ; Park K; Chen W; Chekmareva MA; Foran DJ; Desai JP
    Lab Chip; 2015; 15(18):3695-706. PubMed ID: 26224116
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MEMS impedance flow cytometry designs for effective manipulation of micro entities in health care applications.
    Kumar M; Yadav S; Kumar A; Sharma NN; Akhtar J; Singh K
    Biosens Bioelectron; 2019 Oct; 142():111526. PubMed ID: 31362203
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Thorax Simulator for Complex Dynamic Bioimpedance Measurements With Textile Electrodes.
    Ulbrich M; Muhlsteff J; Teichmann D; Leonhardt S; Walter M
    IEEE Trans Biomed Circuits Syst; 2015 Jun; 9(3):412-20. PubMed ID: 25148671
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Noninvasive electrical impedance sensor for in vivo tissue discrimination at radio frequencies.
    Dai Y; Du J; Yang Q; Zhang J
    Bioelectromagnetics; 2014 Sep; 35(6):385-95. PubMed ID: 24764269
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bioelectrical impedance techniques in medicine. Part I: Bioimpedance measurement. Second section: impedance spectrometry.
    Rigaud B; Morucci JP; Chauveau N
    Crit Rev Biomed Eng; 1996; 24(4-6):257-351. PubMed ID: 9196884
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Portable bioimpedance monitor evaluation for continuous impedance measurements. Towards wearable plethysmography applications.
    Ferreira J; Seoane F; Lindecrantz K
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():559-62. PubMed ID: 24109748
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantification of the heterogeneity in breast cancer cell lines using whole-cell impedance spectroscopy.
    Han A; Yang L; Frazier AB
    Clin Cancer Res; 2007 Jan; 13(1):139-43. PubMed ID: 17200348
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanical phenotyping of breast cancer using MEMS: a method to demarcate benign and cancerous breast tissues.
    Pandya HJ; Chen W; Goodell LA; Foran DJ; Desai JP
    Lab Chip; 2014 Dec; 14(23):4523-32. PubMed ID: 25267099
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microelectrical Impedance Spectroscopy for the Differentiation between Normal and Cancerous Human Urothelial Cell Lines: Real-Time Electrical Impedance Measurement at an Optimal Frequency.
    Park Y; Kim HW; Yun J; Seo S; Park CJ; Lee JZ; Lee JH
    Biomed Res Int; 2016; 2016():8748023. PubMed ID: 26998490
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bioimpedance analysis for the characterization of breast cancer cells in suspension.
    Guofeng Qiao ; Wei Wang ; Wei Duan ; Fan Zheng ; Sinclair AJ; Chatwin CR
    IEEE Trans Biomed Eng; 2012 Aug; 59(8):2321-9. PubMed ID: 22692870
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Human
    Halonen S; Ovissi A; Boyd S; Kari J; Kronström K; Kosunen J; Laurén H; Numminen K; Sievänen H; Hyttinen J
    Physiol Meas; 2022 Feb; 43(1):. PubMed ID: 35051907
    [No Abstract]   [Full Text] [Related]  

  • 20. Wavelet-based multiscale analysis of bioimpedance data measured by electric cell-substrate impedance sensing for classification of cancerous and normal cells.
    Das D; Shiladitya K; Biswas K; Dutta PK; Parekh A; Mandal M; Das S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Dec; 92(6):062702. PubMed ID: 26764722
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.