BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 25013934)

  • 1. Effects of a static magnetic field on phenol degradation effectiveness and Rhodococcus erythropolis growth and respiration in a fed-batch reactor.
    Křiklavová L; Truhlář M; Škodováa P; Lederer T; Jirků V
    Bioresour Technol; 2014 Sep; 167():510-3. PubMed ID: 25013934
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biodegradation of phenol in synthetic and industrial wastewater by Rhodococcus erythropolis UPV-1 immobilized in an air-stirred reactor with clarifier.
    Prieto MB; Hidalgo A; Rodríguez-Fernández C; Serra JL; Llama MJ
    Appl Microbiol Biotechnol; 2002 May; 58(6):853-9. PubMed ID: 12021809
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of sulfur sources on specific desulfurization activity of Rhodococcus erythropolis KA2-5-1 in exponential fed-batch culture.
    Konishi M; Kishimoto M; Omasa T; Katakura Y; Shioya S; Ohtake H
    J Biosci Bioeng; 2005 Mar; 99(3):259-63. PubMed ID: 16233786
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microbial metabolism of 2-chlorophenol, phenol and rho-cresol by Rhodococcus erythropolis M1 in co-culture with Pseudomonas fluorescens P1.
    Goswami M; Shivaraman N; Singh RP
    Microbiol Res; 2005; 160(2):101-9. PubMed ID: 15881826
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 2-fluorophenol degradation by aerobic granular sludge in a sequencing batch reactor.
    Duque AF; Bessa VS; Carvalho MF; de Kreuk MK; van Loosdrecht MC; Castro PM
    Water Res; 2011 Dec; 45(20):6745-52. PubMed ID: 22060965
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Degradation of phenol by Rhodococcus erythropolis UPV-1 immobilized on Biolite in a packed-bed reactor.
    Begoña Prieto M; Hidalgo A; Serra JL; Llama MJ
    J Biotechnol; 2002 Jul; 97(1):1-11. PubMed ID: 12052678
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Degradation of 2,4-dinitrophenol by free and immobilized cells of Rhodococcus erythropolis HL PM-1].
    Kitova AE; Kuvichkina TN; Arinbasarova AIu; Reshetilov AN
    Prikl Biokhim Mikrobiol; 2004; 40(3):307-11. PubMed ID: 15283333
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Induction and carbon catabolite repression of phenol degradation genes in Rhodococcus erythropolis and Rhodococcus jostii.
    Szőköl J; Rucká L; Šimčíková M; Halada P; Nešvera J; Pátek M
    Appl Microbiol Biotechnol; 2014 Oct; 98(19):8267-79. PubMed ID: 24938209
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Studies on composition and stability of a large membered bacterial consortium degrading phenol.
    Ambujom S
    Microbiol Res; 2001; 156(4):293-301. PubMed ID: 11770846
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biodegradation of phenol and m-cresol in a batch and fed batch operated internal loop airlift bioreactor by indigenous mixed microbial culture predominantly Pseudomonas sp.
    Saravanan P; Pakshirajan K; Saha P
    Bioresour Technol; 2008 Dec; 99(18):8553-8. PubMed ID: 18468886
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phenol biodegradation by the thermoacidophilic archaeon Sulfolobus solfataricus 98/2 in a fed-batch bioreactor.
    Christen P; Davidson S; Combet-Blanc Y; Auria R
    Biodegradation; 2011 Jun; 22(3):475-84. PubMed ID: 20886261
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of yeast (Candida maltosa) and bacterial (Rhodococcus erythropolis) phenol hydroxylase activity and its properties in the phenolic compounds biodegradation.
    Fialová A; Cejková A; Masák J; Jirků V
    Commun Agric Appl Biol Sci; 2003; 68(2 Pt A):155-8. PubMed ID: 15296151
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nutrients and culture conditions requirements for the degradation of phenol by Rhodococcus UKMP-5M.
    Suhaila YN; Rosfarizan M; Ahmad SA; Abdul Latif I; Ariff AB
    J Environ Biol; 2013 May; 34(3):635-43. PubMed ID: 24617152
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Host-vector system for phenol-degrading Rhodococcus erythropolis based on Corynebacterium plasmids.
    Veselý M; Pátek M; Nesvera J; Cejková A; Masák J; Jirků V
    Appl Microbiol Biotechnol; 2003 Jun; 61(5-6):523-7. PubMed ID: 12764568
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microbiological transformation of benzene into phenol by cultured Rhodococcus erythropolis 3/89 cells.
    Bezborodov AM; Kulikova AK
    Dokl Biol Sci; 2001; 378():299-301. PubMed ID: 12918356
    [No Abstract]   [Full Text] [Related]  

  • 16. Enhancing cell survival of atrazine degrading Rhodococcus erythropolis NI86/21 cells encapsulated in alginate beads.
    Vancov T; Jury K; Rice N; Van Zwieten L; Morris S
    J Appl Microbiol; 2007 Jan; 102(1):212-20. PubMed ID: 17184337
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biodegradation kinetics of 1,4-benzoquinone in batch and continuous systems.
    Kumar P; Nemati M; Hill GA
    Biodegradation; 2011 Nov; 22(6):1087-93. PubMed ID: 21380603
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Growth kinetics of an indigenous mixed microbial consortium during phenol degradation in a batch reactor.
    Saravanan P; Pakshirajan K; Saha P
    Bioresour Technol; 2008 Jan; 99(1):205-9. PubMed ID: 17236761
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An aerobic sequencing batch reactor for 2,4,6-trinitrophenol (picric acid) biodegradation.
    Weidhaas JL; Schroeder ED; Chang DP
    Biotechnol Bioeng; 2007 Aug; 97(6):1408-14. PubMed ID: 17286267
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Haloalkane hydrolysis by Rhodococcus erythropolis cells: comparison of conventional aqueous phase dehalogenation and nonconventional gas phase dehalogenation.
    Erable B; Goubet I; Lamare S; Legoy MD; Maugard T
    Biotechnol Bioeng; 2004 Apr; 86(1):47-54. PubMed ID: 15007840
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.