BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 25014055)

  • 1. A co-adaptive brain-computer interface for end users with severe motor impairment.
    Faller J; Scherer R; Costa U; Opisso E; Medina J; Müller-Putz GR
    PLoS One; 2014; 9(7):e101168. PubMed ID: 25014055
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A brain-computer interface driven by imagining different force loads on a single hand: an online feasibility study.
    Wang K; Wang Z; Guo Y; He F; Qi H; Xu M; Ming D
    J Neuroeng Rehabil; 2017 Sep; 14(1):93. PubMed ID: 28893295
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A multi-modal modified feedback self-paced BCI to control the gait of an avatar.
    Alchalabi B; Faubert J; Labbé DR
    J Neural Eng; 2021 Apr; 18(5):. PubMed ID: 33711832
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Autocalibration and recurrent adaptation: towards a plug and play online ERD-BCI.
    Faller J; Vidaurre C; Solis-Escalante T; Neuper C; Scherer R
    IEEE Trans Neural Syst Rehabil Eng; 2012 May; 20(3):313-9. PubMed ID: 22481835
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Non-motor tasks improve adaptive brain-computer interface performance in users with severe motor impairment.
    Faller J; Scherer R; Friedrich EV; Costa U; Opisso E; Medina J; Müller-Putz GR
    Front Neurosci; 2014; 8():320. PubMed ID: 25368546
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A hybrid NIRS-EEG system for self-paced brain computer interface with online motor imagery.
    Koo B; Lee HG; Nam Y; Kang H; Koh CS; Shin HC; Choi S
    J Neurosci Methods; 2015 Apr; 244():26-32. PubMed ID: 24797225
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Muscle-selective disinhibition of corticomotor representations using a motor imagery-based brain-computer interface.
    Takemi M; Maeda T; Masakado Y; Siebner HR; Ushiba J
    Neuroimage; 2018 Dec; 183():597-605. PubMed ID: 30172003
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adaptive multi-degree of freedom Brain Computer Interface using online feedback: Towards novel methods and metrics of mutual adaptation between humans and machines for BCI.
    Nguyen CH; Karavas GK; Artemiadis P
    PLoS One; 2019; 14(3):e0212620. PubMed ID: 30840712
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel Morse code-inspired method for multiclass motor imagery brain-computer interface (BCI) design.
    Jiang J; Zhou Z; Yin E; Yu Y; Liu Y; Hu D
    Comput Biol Med; 2015 Nov; 66():11-9. PubMed ID: 26340647
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhancing sensorimotor BCI performance with assistive afferent activity: An online evaluation.
    Vidaurre C; Ramos Murguialday A; Haufe S; Gómez M; Müller KR; Nikulin VV
    Neuroimage; 2019 Oct; 199():375-386. PubMed ID: 31158476
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fatigue in children using motor imagery and P300 brain-computer interfaces.
    Keough JR; Irvine B; Kelly D; Wrightson J; Comaduran Marquez D; Kinney-Lang E; Kirton A
    J Neuroeng Rehabil; 2024 Apr; 21(1):61. PubMed ID: 38658998
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Large-Scale Assessment of a Fully Automatic Co-Adaptive Motor Imagery-Based Brain Computer Interface.
    Acqualagna L; Botrel L; Vidaurre C; Kübler A; Blankertz B
    PLoS One; 2016; 11(2):e0148886. PubMed ID: 26891350
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bring mental activity into action! An enhanced online co-adaptive brain-computer interface training protocol.
    Scherer R; Faller J; Opisso E; Costa U; Steyrl D; Muller-Putz GR
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():2323-6. PubMed ID: 26736758
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improving motor imagery through a mirror box for BCI users.
    Gómez DMC; Braidot AAA
    J Neurophysiol; 2024 May; 131(5):832-841. PubMed ID: 38323330
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electroencephalography (EEG)-based brain-computer interface (BCI): a 2-D virtual wheelchair control based on event-related desynchronization/synchronization and state control.
    Huang D; Qian K; Fei DY; Jia W; Chen X; Bai O
    IEEE Trans Neural Syst Rehabil Eng; 2012 May; 20(3):379-88. PubMed ID: 22498703
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Real-Time Navigation in Google Street View
    Yang L; Van Hulle MM
    Sensors (Basel); 2023 Feb; 23(3):. PubMed ID: 36772744
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhancement of motor imagery training efficiency by an online adaptive training paradigm integrated with error related potential.
    Tao T; Jia Y; Xu G; Liang R; Zhang Q; Chen L; Gao Y; Chen R; Zheng X; Yu Y
    J Neural Eng; 2023 Jan; 20(1):. PubMed ID: 36608339
    [No Abstract]   [Full Text] [Related]  

  • 18. User-centered design in brain-computer interfaces-a case study.
    Schreuder M; Riccio A; Risetti M; Dähne S; Ramsay A; Williamson J; Mattia D; Tangermann M
    Artif Intell Med; 2013 Oct; 59(2):71-80. PubMed ID: 24076341
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Investigating User Proficiency of Motor Imagery for EEG-Based BCI System to Control Simulated Wheelchair.
    Saichoo T; Boonbrahm P; Punsawad Y
    Sensors (Basel); 2022 Dec; 22(24):. PubMed ID: 36560158
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Whatever works: a systematic user-centered training protocol to optimize brain-computer interfacing individually.
    Friedrich EV; Neuper C; Scherer R
    PLoS One; 2013; 8(9):e76214. PubMed ID: 24086710
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.