These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 25014095)

  • 1. Clustering-based ensemble learning for activity recognition in smart homes.
    Jurek A; Nugent C; Bi Y; Wu S
    Sensors (Basel); 2014 Jul; 14(7):12285-304. PubMed ID: 25014095
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of Three State-of-the-Art Classifiers for Recognition of Activities of Daily Living from Smart Home Ambient Data.
    Nef T; Urwyler P; Büchler M; Tarnanas I; Stucki R; Cazzoli D; Müri R; Mosimann U
    Sensors (Basel); 2015 May; 15(5):11725-40. PubMed ID: 26007727
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Using the Dempster-Shafer theory of evidence with a revised lattice structure for activity recognition.
    Liao J; Bi Y; Nugent C
    IEEE Trans Inf Technol Biomed; 2011 Jan; 15(1):74-82. PubMed ID: 21075728
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Probabilistic learning from incomplete data for recognition of activities of daily living in smart homes.
    Zhang S; McClean SI; Scotney BW
    IEEE Trans Inf Technol Biomed; 2012 May; 16(3):454-62. PubMed ID: 22411044
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assessing the quality of activities in a smart environment.
    Cook DJ; Schmitter-Edgecombe M
    Methods Inf Med; 2009; 48(5):480-5. PubMed ID: 19448886
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of accelerometer based multi-sensor versus single-sensor activity recognition systems.
    Gao L; Bourke AK; Nelson J
    Med Eng Phys; 2014 Jun; 36(6):779-85. PubMed ID: 24636448
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A sequence-to-sequence model-based deep learning approach for recognizing activity of daily living for senior care.
    Zhu H; Chen H; Brown R
    J Biomed Inform; 2018 Aug; 84():148-158. PubMed ID: 30004019
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Activity discovery and activity recognition: a new partnership.
    Cook DJ; Krishnan NC; Rashidi P
    IEEE Trans Cybern; 2013 Jun; 43(3):820-8. PubMed ID: 23033328
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A multimodal fusion enabled ensemble approach for human activity recognition in smart homes.
    Ding W; Wu S; Nugent C
    Health Informatics J; 2023; 29(2):14604582231171927. PubMed ID: 37117157
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Model and algorithmic framework for detection and correction of cognitive errors.
    Feki MA; Biswas J; Tolstikov A
    Technol Health Care; 2009; 17(3):203-19. PubMed ID: 19641258
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Annotating smart environment sensor data for activity learning.
    Szewcyzk S; Dwan K; Minor B; Swedlove B; Cook D
    Technol Health Care; 2009; 17(3):161-9. PubMed ID: 19641255
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Automated assessment of cognitive health using smart home technologies.
    Dawadi PN; Cook DJ; Schmitter-Edgecombe M; Parsey C
    Technol Health Care; 2013; 21(4):323-43. PubMed ID: 23949177
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Supervised classification of Activities of Daily Living in Health Smart Homes using SVM.
    Fleury A; Noury N; Vacher M
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():6099-102. PubMed ID: 19965259
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Novel layered clustering-based approach for generating ensemble of classifiers.
    Rahman A; Verma B
    IEEE Trans Neural Netw; 2011 May; 22(5):781-92. PubMed ID: 21486714
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Context-aware mobile health monitoring: evaluation of different pattern recognition methods for classification of physical activity.
    Jatobá LC; Grossmann U; Kunze C; Ottenbacher J; Stork W
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():5250-3. PubMed ID: 19163901
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Activity classification using realistic data from wearable sensors.
    Pärkkä J; Ermes M; Korpipää P; Mäntyjärvi J; Peltola J; Korhonen I
    IEEE Trans Inf Technol Biomed; 2006 Jan; 10(1):119-28. PubMed ID: 16445257
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sound and speech detection and classification in a Health Smart Home.
    Fleury A; Noury N; Vacher M; Glasson H; Seri JF
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():4644-7. PubMed ID: 19163751
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recognition of Daily Activities of Two Residents in a Smart Home Based on Time Clustering.
    Guo J; Li Y; Hou M; Han S; Ren J
    Sensors (Basel); 2020 Mar; 20(5):. PubMed ID: 32155888
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparing supervised learning techniques on the task of physical activity recognition.
    Dalton A; OLaighin G
    IEEE J Biomed Health Inform; 2013 Jan; 17(1):46-52. PubMed ID: 23070357
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Statistical instance-based pruning in ensembles of independent classifiers.
    Hernández-Lobato D; Martínez-Muñoz G; Suárez A
    IEEE Trans Pattern Anal Mach Intell; 2009 Feb; 31(2):364-9. PubMed ID: 19110500
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.