These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 25014100)

  • 1. Wireless displacement sensing of micromachined spiral-coil actuator using resonant frequency tracking.
    Ali MS; AbuZaiter A; Schlosser C; Bycraft B; Takahata K
    Sensors (Basel); 2014 Jul; 14(7):12399-409. PubMed ID: 25014100
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Implantable drug delivery device using frequency-controlled wireless hydrogel microvalves.
    Rahimi S; Sarraf EH; Wong GK; Takahata K
    Biomed Microdevices; 2011 Apr; 13(2):267-77. PubMed ID: 21161600
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Frequency-controlled wireless shape memory polymer microactuator for drug delivery application.
    Zainal MA; Ahmad A; Mohamed Ali MS
    Biomed Microdevices; 2017 Mar; 19(1):8. PubMed ID: 28124762
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Wireless implantable chip with integrated nitinol-based pump for radio-controlled local drug delivery.
    Fong J; Xiao Z; Takahata K
    Lab Chip; 2015 Feb; 15(4):1050-8. PubMed ID: 25473933
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design and simulation of printed spiral coil used in wireless power transmission systems for implant medical devices.
    Wu W; Fang Q
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():4018-21. PubMed ID: 22255221
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Wireless Radio Frequency Triggered Acquisition Device (WRAD) for Self-Synchronised Measurements of the Rate of Change of the MRI Gradient Vector Field for Motion Tracking.
    van Niekerk A; Meintjes E; van der Kouwe A
    IEEE Trans Med Imaging; 2019 Jul; 38(7):1610-1621. PubMed ID: 30629498
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Wirelessly activated device with an integrated ionic polymer metal composite (IPMC) cantilever valve for targeted drug delivery.
    Cheong HR; Nguyen NT; Khaw MK; Teoh BY; Chee PS
    Lab Chip; 2018 Oct; 18(20):3207-3215. PubMed ID: 30229248
    [TBL] [Abstract][Full Text] [Related]  

  • 8. RF probe recovery time reduction with a novel active ringing suppression circuit.
    Peshkovsky AS; Forguez J; Cerioni L; Pusiol DJ
    J Magn Reson; 2005 Nov; 177(1):67-73. PubMed ID: 16111906
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Miniaturized, biopsy-implantable chemical sensor with wireless, magnetic resonance readout.
    Vassiliou CC; Liu VH; Cima MJ
    Lab Chip; 2015 Sep; 15(17):3465-72. PubMed ID: 26177607
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A minimally invasive implantable wireless pressure sensor for continuous IOP monitoring.
    Chitnis G; Maleki T; Samuels B; Cantor LB; Ziaie B
    IEEE Trans Biomed Eng; 2013 Jan; 60(1):250-6. PubMed ID: 22736631
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design of Shape Memory Alloy Coil Spring Actuator for Improving Performance in Cyclic Actuation.
    Koh JS
    Materials (Basel); 2018 Nov; 11(11):. PubMed ID: 30463218
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Wirelessly addressable heater array for centrifugal microfluidics and Escherichia coli sterilization.
    Chen X; Song L; Assadsangabi B; Fang J; Mohamed Ali MS; Takahata K
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():5505-8. PubMed ID: 24110983
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Wirelessly-Powered Homecage With Segmented Copper Foils and Closed-Loop Power Control.
    Mirbozorgi SA; Jia Y; Canales D; Ghovanloo M
    IEEE Trans Biomed Circuits Syst; 2016 Oct; 10(5):979-989. PubMed ID: 27654976
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Noninvasive, Electromagnetic, Epidermal Sensing Device for Hemodynamics Monitoring.
    Mohammed N; Cluff K; Griffith J; Loflin B
    IEEE Trans Biomed Circuits Syst; 2019 Dec; 13(6):1393-1404. PubMed ID: 31603799
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Integrated radio-frequency/wireless coil design for simultaneous MR image acquisition and wireless communication.
    Darnell D; Cuthbertson J; Robb F; Song AW; Truong TK
    Magn Reson Med; 2019 Mar; 81(3):2176-2183. PubMed ID: 30277273
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Double-tuned radiofrequency coil for (19)F and (1)H imaging.
    Otake Y; Soutome Y; Hirata K; Ochi H; Bito Y
    Magn Reson Med Sci; 2014; 13(3):199-205. PubMed ID: 24990464
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differential resistance feedback control of a self-sensing shape memory alloy actuated system.
    D JS; S SN; K D
    ISA Trans; 2014 Mar; 53(2):289-97. PubMed ID: 24314833
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The design and use of a dual-frequency surface coil providing proton images for improved localization in 31P spectroscopy of small lesions.
    Leach MO; Hind A; Sauter R; Requardt H; Weber H
    Med Phys; 1986; 13(4):510-3. PubMed ID: 3736508
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An optical system for wireless detuning of parallel resonant circuits.
    Wong EY; Zhang Q; Duerk JL; Lewin JS; Wendt M
    J Magn Reson Imaging; 2000 Oct; 12(4):632-8. PubMed ID: 11042647
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Micromachined Capacitive Pressure Sensor Using a Cavity-Less Structure with Bulk-Metal/Elastomer Layers and Its Wireless Telemetry Application.
    Takahata K; Gianchandani YB
    Sensors (Basel); 2008 Apr; 8(4):2317-2330. PubMed ID: 27879824
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.