These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 25014101)

  • 21. Neuromuscular Strategies during Cycling at Different Muscular Demands.
    Enders H; VON Tscharner V; Nigg BM
    Med Sci Sports Exerc; 2015 Jul; 47(7):1450-9. PubMed ID: 25380476
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effects of isolated locomotor muscle fatigue on pacing and time trial performance.
    de Morree HM; Marcora SM
    Eur J Appl Physiol; 2013 Sep; 113(9):2371-80. PubMed ID: 23756830
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Alterations in neuromuscular function and perceptual responses following acute eccentric cycling exercise.
    Elmer SJ; McDaniel J; Martin JC
    Eur J Appl Physiol; 2010 Dec; 110(6):1225-33. PubMed ID: 20737166
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Electromyographic activity and rate of muscle fatigue of the quadriceps femoris during cycling exercise in the severe domain.
    Camata TV; Altimari LR; Bortolotti H; Dantas JL; Fontes EB; Smirmaul BP; Okano AH; Chacon-Mikahil MP; Moraes AC
    J Strength Cond Res; 2011 Sep; 25(9):2537-43. PubMed ID: 21804424
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Knee extensor fatigue developed during high-intensity exercise limits lower-limb power production.
    O'bryan SJ; Billaut F; Taylor JL; Rouffet DM
    J Sports Sci; 2018 May; 36(9):1030-1037. PubMed ID: 28718344
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Analysis of muscular activity and dynamic response of the lower limb adding vibration to cycling.
    Munera M; Bertucci W; Duc S; Chiementin X
    J Sports Sci; 2018 Jul; 36(13):1465-1475. PubMed ID: 29099665
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Leg muscle recruitment during cycling is less developed in triathletes than cyclists despite matched cycling training loads.
    Chapman AR; Vicenzino B; Blanch P; Hodges PW
    Exp Brain Res; 2007 Aug; 181(3):503-18. PubMed ID: 17549464
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Relationship between cycling mechanics and core stability.
    Abt JP; Smoliga JM; Brick MJ; Jolly JT; Lephart SM; Fu FH
    J Strength Cond Res; 2007 Nov; 21(4):1300-4. PubMed ID: 18076271
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Altered movement patterns but not muscle recruitment in moderately trained triathletes during running after cycling.
    Bonacci J; Blanch P; Chapman AR; Vicenzino B
    J Sports Sci; 2010 Nov; 28(13):1477-87. PubMed ID: 20945251
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Adjusted saddle position counteracts the modified muscle activation patterns during uphill cycling.
    Fonda B; Panjan A; Markovic G; Sarabon N
    J Electromyogr Kinesiol; 2011 Oct; 21(5):854-60. PubMed ID: 21684759
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Changes in muscle activity and kinematics of highly trained cyclists during fatigue.
    Dingwell JB; Joubert JE; Diefenthaeler F; Trinity JD
    IEEE Trans Biomed Eng; 2008 Nov; 55(11):2666-74. PubMed ID: 18990638
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Modifications in activation of lower limb muscles as a function of initial foot position in cycling.
    Padulo J; Powell DW; Ardigò LP; Viggiano D
    J Electromyogr Kinesiol; 2015 Aug; 25(4):648-52. PubMed ID: 25921852
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Fatigue-Induced Changes in Movement Pattern and Muscle Activity During Ballet Releve on Demi-Pointe.
    Lin CF; Lee WC; Chen YA; Hsue BJ
    J Appl Biomech; 2016 Aug; 32(4):350-8. PubMed ID: 27622498
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Does cycling effect motor coordination of the leg during running in elite triathletes?
    Chapman AR; Vicenzino B; Blanch P; Dowlan S; Hodges PW
    J Sci Med Sport; 2008 Jul; 11(4):371-80. PubMed ID: 17466592
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Strategies to identify changes in SEMG due to muscle fatigue during cycling.
    Singh VP; Kumar DK; Polus B; Fraser S
    J Med Eng Technol; 2007; 31(2):144-51. PubMed ID: 17365438
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effects of fatigue on intermuscular coordination during repetitive hammering.
    Cote JN; Feldman AG; Mathieu PA; Levin MF
    Motor Control; 2008 Apr; 12(2):79-92. PubMed ID: 18483444
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Locomotor muscle fatigue increases cardiorespiratory responses and reduces performance during intense cycling exercise independently from metabolic stress.
    Marcora SM; Bosio A; de Morree HM
    Am J Physiol Regul Integr Comp Physiol; 2008 Mar; 294(3):R874-83. PubMed ID: 18184760
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effect of pedaling rates and myosin heavy chain composition in the vastus lateralis muscle on the power generating capability during incremental cycling in humans.
    Majerczak J; Szkutnik Z; Duda K; Komorowska M; Kolodziejski L; Karasinski J; Zoladz JA
    Physiol Res; 2008; 57(6):873-884. PubMed ID: 18052677
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effects of fatigue on corticospinal excitability of the human knee extensors.
    Kennedy DS; McNeil CJ; Gandevia SC; Taylor JL
    Exp Physiol; 2016 Dec; 101(12):1552-1564. PubMed ID: 27652591
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Reproducibility of eight lower limb muscles activity level in the course of an incremental pedaling exercise.
    Laplaud D; Hug F; Grélot L
    J Electromyogr Kinesiol; 2006 Apr; 16(2):158-66. PubMed ID: 16126412
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.