BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 25014175)

  • 1. The impact of anti-apoptotic gene Bcl-2∆ expression on CHO central metabolism.
    Templeton N; Lewis A; Dorai H; Qian EA; Campbell MP; Smith KD; Lang SE; Betenbaugh MJ; Young JD
    Metab Eng; 2014 Sep; 25():92-102. PubMed ID: 25014175
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Combinatorial engineering of ldh-a and bcl-2 for reducing lactate production and improving cell growth in dihydrofolate reductase-deficient Chinese hamster ovary cells.
    Jeon MK; Yu DY; Lee GM
    Appl Microbiol Biotechnol; 2011 Nov; 92(4):779-90. PubMed ID: 21792592
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Elucidating the role of copper in CHO cell energy metabolism using (13)C metabolic flux analysis.
    Nargund S; Qiu J; Goudar CT
    Biotechnol Prog; 2015; 31(5):1179-86. PubMed ID: 26097228
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Overexpression of the mitochondrial pyruvate carrier reduces lactate production and increases recombinant protein productivity in CHO cells.
    Bulté DB; Palomares LA; Parra CG; Martínez JA; Contreras MA; Noriega LG; Ramírez OT
    Biotechnol Bioeng; 2020 Sep; 117(9):2633-2647. PubMed ID: 32436990
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Combining high-throughput screening of caspase activity with anti-apoptosis genes for development of robust CHO production cell lines.
    Dorai H; Ellis D; Keung YS; Campbell M; Zhuang M; Lin C; Betenbaugh MJ
    Biotechnol Prog; 2010; 26(5):1367-81. PubMed ID: 20945491
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of Bcl-x(L) overexpression on lactate metabolism in chinese hamster ovary cells producing antibody.
    Ha TK; Jeon MK; Yu DY; Lee GM
    Biotechnol Prog; 2013; 29(6):1594-8. PubMed ID: 24039207
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metabolic engineering of CHO cells for the development of a robust protein production platform.
    Gupta SK; Srivastava SK; Sharma A; Nalage VHH; Salvi D; Kushwaha H; Chitnis NB; Shukla P
    PLoS One; 2017; 12(8):e0181455. PubMed ID: 28763459
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolic analysis of antibody producing CHO cells in fed-batch production.
    Dean J; Reddy P
    Biotechnol Bioeng; 2013 Jun; 110(6):1735-47. PubMed ID: 23296898
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanisms of pyruvate inhibition of oxidant-induced apoptosis in human endothelial cells.
    Lee YJ; Kang IJ; Bünger R; Kang YH
    Microvasc Res; 2003 Sep; 66(2):91-101. PubMed ID: 12935767
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A comparison of the properties of a Bcl-xL variant to the wild-type anti-apoptosis inhibitor in mammalian cell cultures.
    Figueroa B; Sauerwald TM; Oyler GA; Hardwick JM; Betenbaugh MJ
    Metab Eng; 2003 Oct; 5(4):230-45. PubMed ID: 14642351
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enzyme capacity-based genome scale modelling of CHO cells.
    Yeo HC; Hong J; Lakshmanan M; Lee DY
    Metab Eng; 2020 Jul; 60():138-147. PubMed ID: 32330653
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Aven and Bcl-xL enhance protection against apoptosis for mammalian cells exposed to various culture conditions.
    Figueroa B; Chen S; Oyler GA; Hardwick JM; Betenbaugh MJ
    Biotechnol Bioeng; 2004 Mar; 85(6):589-600. PubMed ID: 14966800
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Towards industrial application of quasi real-time metabolic flux analysis for mammalian cell culture.
    Goudar C; Biener R; Zhang C; Michaels J; Piret J; Konstantinov K
    Adv Biochem Eng Biotechnol; 2006; 101():99-118. PubMed ID: 16989259
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Anti-cell death engineering of CHO cells: co-overexpression of Bcl-2 for apoptosis inhibition, Beclin-1 for autophagy induction.
    Lee JS; Ha TK; Park JH; Lee GM
    Biotechnol Bioeng; 2013 Aug; 110(8):2195-207. PubMed ID: 23436561
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Combining mechanistic and data-driven approaches to gain process knowledge on the control of the metabolic shift to lactate uptake in a fed-batch CHO process.
    Zalai D; Koczka K; Párta L; Wechselberger P; Klein T; Herwig C
    Biotechnol Prog; 2015; 31(6):1657-68. PubMed ID: 26439213
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Expression of anti-apoptosis genes alters lactate metabolism of Chinese Hamster Ovary cells in culture.
    Dorai H; Kyung YS; Ellis D; Kinney C; Lin C; Jan D; Moore G; Betenbaugh MJ
    Biotechnol Bioeng; 2009 Jun; 103(3):592-608. PubMed ID: 19241388
    [TBL] [Abstract][Full Text] [Related]  

  • 17.
    McAtee Pereira AG; Walther JL; Hollenbach M; Young JD
    Biotechnol J; 2018 Oct; 13(10):e1700518. PubMed ID: 29405605
    [No Abstract]   [Full Text] [Related]  

  • 18. A BioDesign Approach to Obtain High Yields of Biosimilars by Anti-apoptotic Cell Engineering: a Case Study to Increase the Production Yield of Anti-TNF Alpha Producing Recombinant CHO Cells.
    Gulce Iz S; Inevi MA; Metiner PS; Tamis DA; Kisbet N
    Appl Biochem Biotechnol; 2018 Jan; 184(1):303-322. PubMed ID: 28685239
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improving culture performance and antibody production in CHO cell culture processes by reducing the Warburg effect.
    Buchsteiner M; Quek LE; Gray P; Nielsen LK
    Biotechnol Bioeng; 2018 Sep; 115(9):2315-2327. PubMed ID: 29704441
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metabolic flux analysis of CHO cells at growth and non-growth phases using isotopic tracers and mass spectrometry.
    Ahn WS; Antoniewicz MR
    Metab Eng; 2011 Sep; 13(5):598-609. PubMed ID: 21821143
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.