These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

408 related articles for article (PubMed ID: 25014218)

  • 1. Characterization of a novel bile acid-based delivery platform for microencapsulated pancreatic β-cells.
    Mooranian A; Negrulj R; Arfuso F; Al-Salami H
    Artif Cells Nanomed Biotechnol; 2016; 44(1):194-200. PubMed ID: 25014218
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Innovative Microcapsules for Pancreatic β-Cells Harvested from Mature Double-Transgenic Mice: Cell Imaging, Viability, Induced Glucose-Stimulated Insulin Measurements and Proinflammatory Cytokines Analysis.
    Mooranian A; Tackechi R; Jamieson E; Morahan G; Al-Salami H
    Pharm Res; 2017 Jun; 34(6):1217-1223. PubMed ID: 28289997
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Designing anti-diabetic β-cells microcapsules using polystyrenic sulfonate, polyallylamine, and a tertiary bile acid: Morphology, bioenergetics, and cytokine analysis.
    Mooranian A; Negrulj R; Al-Salami H; Morahan G; Jamieson E
    Biotechnol Prog; 2016 Mar; 32(2):501-9. PubMed ID: 26748789
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Influence of Stabilized Deconjugated Ursodeoxycholic Acid on Polymer-Hydrogel System of Transplantable NIT-1 Cells.
    Mooranian A; Negrulj R; Al-Salami H
    Pharm Res; 2016 May; 33(5):1182-90. PubMed ID: 26818840
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Effects of Ionic Gelation- Vibrational Jet Flow Technique in Fabrication of Microcapsules Incorporating β-cell: Applications in Diabetes.
    Mooranian A; Negrulj R; Al-Salami H
    Curr Diabetes Rev; 2017; 13(1):91-96. PubMed ID: 26710877
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The incorporation of water-soluble gel matrix into bile acid-based microcapsules for the delivery of viable β-cells of the pancreas, in diabetes treatment: biocompatibility and functionality studies.
    Mooranian A; Negrulj R; Al-Salami H
    Drug Deliv Transl Res; 2016 Feb; 6(1):17-23. PubMed ID: 26671765
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Advanced bile acid-based multi-compartmental microencapsulated pancreatic β-cells integrating a polyelectrolyte-bile acid formulation, for diabetes treatment.
    Mooranian A; Negrulj R; Chen-Tan N; Fakhoury M; Arfuso F; Jones F; Al-Salami H
    Artif Cells Nanomed Biotechnol; 2016; 44(2):588-95. PubMed ID: 25358121
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Morphological, Stability, and Hypoglycemic Effects of New Gliclazide-Bile Acid Microcapsules for Type 1 Diabetes Treatment: the Microencapsulation of Anti-diabetics Using a Microcapsule-Stabilizing Bile Acid.
    Mathavan S; Chen-Tan N; Arfuso F; Al-Salami H
    AAPS PharmSciTech; 2018 Oct; 19(7):3009-3018. PubMed ID: 30062539
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of molecular weights of microencapsulating polymers on viability of mouse-cloned pancreatic β-cells: biomaterials, osmotic forces and potential applications in diabetes treatment.
    Mooranian A; Takechi R; Jamieson E; Morahan G; Al-Salami H
    Pharm Dev Technol; 2018 Feb; 23(2):145-150. PubMed ID: 28425308
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrokinetic potential-stabilization by bile acid-microencapsulating formulation of pancreatic β-cells cultured in high ratio poly-L-ornithine-gel hydrogel colloidal dispersion: applications in cell-biomaterials, tissue engineering and biotechnological applications.
    Mooranian A; Negrulj R; Takechi R; Jamieson E; Morahan G; Al-Salami H
    Artif Cells Nanomed Biotechnol; 2018 Sep; 46(6):1156-1162. PubMed ID: 28776395
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of a tertiary bile acid, taurocholic acid, on the morphology and physical characteristics of microencapsulated probucol: potential applications in diabetes: a characterization study.
    Mooranian A; Negrulj R; Arfuso F; Al-Salami H
    Drug Deliv Transl Res; 2015 Oct; 5(5):511-22. PubMed ID: 26242686
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An advanced microencapsulated system: a platform for optimized oral delivery of antidiabetic drug-bile acid formulations.
    Mooranian A; Negrulj R; Mathavan S; Martinez J; Sciarretta J; Chen-Tan N; Mukkur TK; Mikov M; Lalic-Popovic M; Stojancevic M; Golocorbin-Kon S; Al-Salami H
    Pharm Dev Technol; 2015; 20(6):702-9. PubMed ID: 24798888
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A comprehensive study of novel microcapsules incorporating gliclazide and a permeation enhancing bile acid: hypoglycemic effect in an animal model of Type-1 diabetes.
    Mathavan S; Chen-Tan N; Arfuso F; Al-Salami H
    Drug Deliv; 2016 Oct; 23(8):2869-2880. PubMed ID: 26610261
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Flow vibration-doubled concentric system coupled with low ratio amine to produce bile acid-macrocapsules of β-cells.
    Mooranian A; Negrulj R; Al-Salami H
    Ther Deliv; 2016; 7(3):171-8. PubMed ID: 26893249
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Release and swelling studies of an innovative antidiabetic-bile acid microencapsulated formulation, as a novel targeted therapy for diabetes treatment.
    Mooranian A; Negrulj R; Al-Sallami HS; Fang Z; Mikov M; Golocorbin-Kon S; Fakhoury M; Arfuso F; Al-Salami H
    J Microencapsul; 2015; 32(2):151-6. PubMed ID: 25265061
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multicompartmental, multilayered probucol microcapsules for diabetes mellitus: Formulation characterization and effects on production of insulin and inflammation in a pancreatic β-cell line.
    Mooranian A; Negrulj R; Arfuso F; Al-Salami H
    Artif Cells Nanomed Biotechnol; 2016 Nov; 44(7):1642-53. PubMed ID: 26377035
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Graphene oxide increases the viability of C2C12 myoblasts microencapsulated in alginate.
    Ciriza J; Saenz del Burgo L; Virumbrales-Muñoz M; Ochoa I; Fernandez LJ; Orive G; Hernandez RM; Pedraz JL
    Int J Pharm; 2015 Sep; 493(1-2):260-70. PubMed ID: 26220651
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Superior cell delivery features of poly(ethylene glycol) incorporated alginate, chitosan, and poly-L-lysine microcapsules.
    Haque T; Chen H; Ouyang W; Martoni C; Lawuyi B; Urbanska AM; Prakash S
    Mol Pharm; 2005; 2(1):29-36. PubMed ID: 15804175
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Novel chenodeoxycholic acid-sodium alginate matrix in the microencapsulation of the potential antidiabetic drug, probucol. An in vitro study.
    Mooranian A; Negrulj R; Mikov M; Golocorbin-Kon S; Arfuso F; Al-Salami H
    J Microencapsul; 2015; 32(6):589-97. PubMed ID: 26190214
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characteristics of Poly-L-Ornithine-coated alginate microcapsules.
    Darrabie MD; Kendall WF; Opara EC
    Biomaterials; 2005 Dec; 26(34):6846-52. PubMed ID: 15955558
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.