BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 25014366)

  • 21. The impact of ocean acidification and cadmium on the immune responses of Pacific oyster, Crassostrea gigas.
    Cao R; Liu Y; Wang Q; Zhang Q; Yang D; Liu H; Qu Y; Zhao J
    Fish Shellfish Immunol; 2018 Oct; 81():456-462. PubMed ID: 30064018
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Gene expression correlated with delay in shell formation in larval Pacific oysters (Crassostrea gigas) exposed to experimental ocean acidification provides insights into shell formation mechanisms.
    De Wit P; Durland E; Ventura A; Langdon CJ
    BMC Genomics; 2018 Feb; 19(1):160. PubMed ID: 29471790
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Impact of ocean warming and ocean acidification on larval development and calcification in the sea urchin Tripneustes gratilla.
    Sheppard Brennand H; Soars N; Dworjanyn SA; Davis AR; Byrne M
    PLoS One; 2010 Jun; 5(6):e11372. PubMed ID: 20613879
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Developmental dynamics of myogenesis in Pacific oyster Crassostrea gigas.
    Li H; Li Q; Yu H; Du S
    Comp Biochem Physiol B Biochem Mol Biol; 2019 Jan; 227():21-30. PubMed ID: 30193833
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Larvae of the coral eating crown-of-thorns starfish, Acanthaster planci in a warmer-high CO2 ocean.
    Kamya PZ; Dworjanyn SA; Hardy N; Mos B; Uthicke S; Byrne M
    Glob Chang Biol; 2014 Nov; 20(11):3365-76. PubMed ID: 24615941
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Adult exposure to ocean acidification is maladaptive for larvae of the Sydney rock oyster
    Parker LM; O'Connor WA; Byrne M; Coleman RA; Virtue P; Dove M; Gibbs M; Spohr L; Scanes E; Ross PM
    Biol Lett; 2017 Feb; 13(2):. PubMed ID: 28202683
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Energetic lipid responses of larval oysters to ocean acidification.
    Gibbs MC; Parker LM; Scanes E; Byrne M; O'Connor WA; Ross PM
    Mar Pollut Bull; 2021 Jul; 168():112441. PubMed ID: 33991985
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Sea urchin larvae show resilience to ocean acidification at the time of settlement and metamorphosis.
    Espinel-Velasco N; Agüera A; Lamare M
    Mar Environ Res; 2020 Jul; 159():104977. PubMed ID: 32662430
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Long-term environmental tolerance of the non-indigenous Pacific oyster to expected contemporary climate change conditions.
    Pack KE; Rius M; Mieszkowska N
    Mar Environ Res; 2021 Feb; 164():105226. PubMed ID: 33316607
    [TBL] [Abstract][Full Text] [Related]  

  • 30. High tolerance to temperature and salinity change should enable scleractinian coral Platygyra acuta from marginal environments to persist under future climate change.
    Chui APY; Ang P
    PLoS One; 2017; 12(6):e0179423. PubMed ID: 28622371
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Proteomic and metabolomic responses of Pacific oyster Crassostrea gigas to elevated pCO2 exposure.
    Wei L; Wang Q; Wu H; Ji C; Zhao J
    J Proteomics; 2015 Jan; 112():83-94. PubMed ID: 25175059
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mechanical robustness of the calcareous tubeworm Hydroides elegans: warming mitigates the adverse effects of ocean acidification.
    Li C; Meng Y; He C; Chan VB; Yao H; Thiyagarajan V
    Biofouling; 2016; 32(2):191-204. PubMed ID: 26820060
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Vulnerability of the calcifying larval stage of the Antarctic sea urchin Sterechinus neumayeri to near-future ocean acidification and warming.
    Byrne M; Ho MA; Koleits L; Price C; King CK; Virtue P; Tilbrook B; Lamare M
    Glob Chang Biol; 2013 Jul; 19(7):2264-75. PubMed ID: 23504957
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Combined effects of arsenic, salinity and temperature on Crassostrea gigas embryotoxicity.
    Moreira A; Freitas R; Figueira E; Volpi Ghirardini A; Soares AMVM; Radaelli M; Guida M; Libralato G
    Ecotoxicol Environ Saf; 2018 Jan; 147():251-259. PubMed ID: 28846930
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Vulnerability of Tritia reticulata (L.) early life stages to ocean acidification and warming.
    Oliveira IB; Freitas DB; Fonseca JG; Laranjeiro F; Rocha RJM; Hinzmann M; Machado J; Barroso CM; Galante-Oliveira S
    Sci Rep; 2020 Mar; 10(1):5325. PubMed ID: 32210337
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Proteomic response of early juvenile Pacific oysters (
    Crandall G; Elliott Thompson R; Eudeline B; Vadopalas B; Timmins-Schiffman E; Roberts S
    PeerJ; 2022; 10():e14158. PubMed ID: 36262416
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Directional fabrication and dissolution of larval and juvenile oyster shells under ocean acidification.
    Chandra Rajan K; Li Y; Dang X; Lim YK; Suzuki M; Lee SW; Vengatesen T
    Proc Biol Sci; 2023 Jan; 290(1991):20221216. PubMed ID: 36651043
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Oysters and eelgrass: potential partners in a high pCO
    Groner ML; Burge CA; Cox R; Rivlin ND; Turner M; Van Alstyne KL; Wyllie-Echeverria S; Bucci J; Staudigel P; Friedman CS
    Ecology; 2018 Aug; 99(8):1802-1814. PubMed ID: 29800484
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effects of ocean acidification on immune responses of the Pacific oyster Crassostrea gigas.
    Wang Q; Cao R; Ning X; You L; Mu C; Wang C; Wei L; Cong M; Wu H; Zhao J
    Fish Shellfish Immunol; 2016 Feb; 49():24-33. PubMed ID: 26706224
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Moderate ocean warming mitigates, but more extreme warming exacerbates the impacts of zinc from engineered nanoparticles on a marine larva.
    Mos B; Kaposi KL; Rose AL; Kelaher B; Dworjanyn SA
    Environ Pollut; 2017 Sep; 228():190-200. PubMed ID: 28535490
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.