These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 25014476)

  • 1. Effect of water table fluctuations on phreatophytic root distribution.
    Tron S; Laio F; Ridolfi L
    J Theor Biol; 2014 Nov; 360():102-108. PubMed ID: 25014476
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phreatophytic vegetation and groundwater fluctuations: a review of current research and application of ecosystem response modeling with an emphasis on great basin vegetation.
    Naumburg E; Mata-Gonzalez R; Hunter RG; McLendon T; Martin DW
    Environ Manage; 2005 Jun; 35(6):726-40. PubMed ID: 15940400
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Root plasticity of Populus euphratica seedlings in response to different water table depths and contrasting sediment types.
    Wang L; Zhao C; Li J; Liu Z; Wang J
    PLoS One; 2015; 10(3):e0118691. PubMed ID: 25742175
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inter-species competition-facilitation in stochastic riparian vegetation dynamics.
    Tealdi S; Camporeale C; Ridolfi L
    J Theor Biol; 2013 Feb; 318():13-21. PubMed ID: 23147231
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Linking riparian dynamics and groundwater: an ecohydrologic approach to modeling groundwater and riparian vegetation.
    Baird KJ; Stromberg JC; Maddock T
    Environ Manage; 2005 Oct; 36(4):551-64. PubMed ID: 16222461
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Dynamic changes of groundwater level and vegetation in water table fluctuant belt in lower reaches of Heihe River: coupling simulation].
    Zhao CY; Li SB; Jia YH; Jiang YC
    Ying Yong Sheng Tai Xue Bao; 2008 Dec; 19(12):2687-92. PubMed ID: 19288724
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Global patterns of groundwater table depth.
    Fan Y; Li H; Miguez-Macho G
    Science; 2013 Feb; 339(6122):940-3. PubMed ID: 23430651
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Changes in groundwater levels and the response of natural vegetation to transfer of water to the lower reaches of the Tarim River.
    Xu HL; Ye M; Li JM
    J Environ Sci (China); 2007; 19(10):1199-207. PubMed ID: 18062418
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamics of phreatophyte root growth relative to a seasonally fluctuating water table in a Mediterranean-type environment.
    Canham CA; Froend RH; Stock WD; Davies M
    Oecologia; 2012 Dec; 170(4):909-16. PubMed ID: 22692384
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Performance of deep-rooted phreatophytic trees at a site containing total petroleum hydrocarbons.
    Ferro AM; Adham T; Berra B; Tsao D
    Int J Phytoremediation; 2013; 15(3):232-44. PubMed ID: 23488009
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydrologic regulation of plant rooting depth.
    Fan Y; Miguez-Macho G; Jobbágy EG; Jackson RB; Otero-Casal C
    Proc Natl Acad Sci U S A; 2017 Oct; 114(40):10572-10577. PubMed ID: 28923923
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Water circulation and governing factors in humid tropical river basins in the central Western Ghats, Karnataka, India.
    Tripti M; Lambs L; Gurumurthy GP; Moussa I; Balakrishna K; Chadaga MD
    Rapid Commun Mass Spectrom; 2016 Jan; 30(1):175-90. PubMed ID: 26661985
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessing the impact of changes in landuse and management practices on the diffuse pollution and retention of nitrate in a riparian floodplain.
    Krause S; Jacobs J; Voss A; Bronstert A; Zehe E
    Sci Total Environ; 2008 Jan; 389(1):149-64. PubMed ID: 17915291
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Global separation of plant transpiration from groundwater and streamflow.
    Evaristo J; Jasechko S; McDonnell JJ
    Nature; 2015 Sep; 525(7567):91-4. PubMed ID: 26333467
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Geoelectrical imaging of hyporheic exchange and mixing of river water and groundwater in a large regulated river.
    Cardenas MB; Markowski MS
    Environ Sci Technol; 2011 Feb; 45(4):1407-11. PubMed ID: 21194211
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Coupling LiDAR and thermal imagery to model the effects of riparian vegetation shade and groundwater inputs on summer river temperature.
    Wawrzyniak V; Allemand P; Bailly S; Lejot J; Piégay H
    Sci Total Environ; 2017 Aug; 592():616-626. PubMed ID: 28318696
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessing the performance of a riparian vegetation model in a river with a low slope and fine sediment.
    Sanjaya K; Asaeda T
    Environ Technol; 2017 Mar; 38(5):517-528. PubMed ID: 27286253
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Human impacts on the stream-groundwater exchange zone.
    Hancock PJ
    Environ Manage; 2002 Jun; 29(6):763-81. PubMed ID: 11992170
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improving representation of riparian vegetation shading in a regional stream temperature model using LiDAR data.
    Loicq P; Moatar F; Jullian Y; Dugdale SJ; Hannah DM
    Sci Total Environ; 2018 May; 624():480-490. PubMed ID: 29268220
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Water fluxes mediated by vegetation: emerging isotopic insights at the soil and atmosphere interfaces.
    Dubbert M; Werner C
    New Phytol; 2019 Mar; 221(4):1754-1763. PubMed ID: 30341780
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.