These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

86 related articles for article (PubMed ID: 25014595)

  • 41. The mechanism of GTP hydrolysis by Ras probed by Fourier transform infrared spectroscopy.
    Du X; Frei H; Kim SH
    J Biol Chem; 2000 Mar; 275(12):8492-500. PubMed ID: 10722686
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Solution structure of the state 1 conformer of GTP-bound H-Ras protein and distinct dynamic properties between the state 1 and state 2 conformers.
    Araki M; Shima F; Yoshikawa Y; Muraoka S; Ijiri Y; Nagahara Y; Shirono T; Kataoka T; Tamura A
    J Biol Chem; 2011 Nov; 286(45):39644-53. PubMed ID: 21930707
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Raf promotes dimerization of the Ras G-domain with increased allosteric connections.
    Packer MR; Parker JA; Chung JK; Li Z; Lee YK; Cookis T; Guterres H; Alvarez S; Hossain MA; Donnelly DP; Agar JN; Makowski L; Buck M; Groves JT; Mattos C
    Proc Natl Acad Sci U S A; 2021 Mar; 118(10):. PubMed ID: 33653954
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The pre-hydrolysis state of p21(ras) in complex with GTP: new insights into the role of water molecules in the GTP hydrolysis reaction of ras-like proteins.
    Scheidig AJ; Burmester C; Goody RS
    Structure; 1999 Nov; 7(11):1311-24. PubMed ID: 10574788
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Why have mutagenesis studies not located the general base in ras p21.
    Schweins T; Langen R; Warshel A
    Nat Struct Biol; 1994 Jul; 1(7):476-84. PubMed ID: 7664067
    [TBL] [Abstract][Full Text] [Related]  

  • 46. New insight into the dynamic properties and the active site architecture of H-Ras p21 revealed by X-ray crystallography at very high resolution.
    Klink BU; Scheidig AJ
    BMC Struct Biol; 2010 Oct; 10():38. PubMed ID: 20973973
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Biomolecular dynamics studied with IR-spectroscopy using quantum cascade lasers combined with nanosecond perturbation techniques.
    Popp A; Scheerer D; Heck B; Hauser K
    Spectrochim Acta A Mol Biomol Spectrosc; 2017 Jun; 181():192-199. PubMed ID: 28364666
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A high-sensitivity femtosecond to microsecond time-resolved infrared vibrational spectrometer.
    Towrie M; Gabrielsson A; Matousek P; Parker AW; Rodriguez AM; Vlcek A
    Appl Spectrosc; 2005 Apr; 59(4):467-73. PubMed ID: 15901332
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Inferring protein domain interactions from databases of interacting proteins.
    Riley R; Lee C; Sabatti C; Eisenberg D
    Genome Biol; 2005; 6(10):R89. PubMed ID: 16207360
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The role of G-domain orientation and nucleotide state on the Ras isoform-specific membrane interaction.
    Kapoor S; Weise K; Erlkamp M; Triola G; Waldmann H; Winter R
    Eur Biophys J; 2012 Oct; 41(10):801-13. PubMed ID: 22851002
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Protein dynamics observed by tunable mid-IR quantum cascade lasers across the time range from 10ns to 1s.
    Schultz BJ; Mohrmann H; Lorenz-Fonfria VA; Heberle J
    Spectrochim Acta A Mol Biomol Spectrosc; 2018 Jan; 188():666-674. PubMed ID: 28110813
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A Q-switched Ho:YAG laser assisted nanosecond time-resolved T-jump transient mid-IR absorbance spectroscopy with high sensitivity.
    Li D; Li Y; Li H; Wu X; Yu Q; Weng Y
    Rev Sci Instrum; 2015 May; 86(5):053105. PubMed ID: 26026512
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The Role of Gln61 in HRas GTP hydrolysis: a quantum mechanics/molecular mechanics study.
    Martín-García F; Mendieta-Moreno JI; López-Viñas E; Gómez-Puertas P; Mendieta J
    Biophys J; 2012 Jan; 102(1):152-7. PubMed ID: 22225809
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Protein conformational changes and protonation dynamics probed by a single shot using quantum-cascade-laser-based IR spectroscopy.
    Schubert L; Langner P; Ehrenberg D; Lorenz-Fonfria VA; Heberle J
    J Chem Phys; 2022 May; 156(20):204201. PubMed ID: 35649857
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The many faces of Ras: recognition of small GTP-binding proteins.
    Corbett KD; Alber T
    Trends Biochem Sci; 2001 Dec; 26(12):710-6. PubMed ID: 11738594
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Method for time-resolved monitoring of a solid state biological film using photothermal infrared nanoscopy on the example of poly-L-lysine.
    Ramer G; Balbekova A; Schwaighofer A; Lendl B
    Anal Chem; 2015 Apr; 87(8):4415-20. PubMed ID: 25809862
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Dual time-resolved temperature-jump fluorescence and infrared spectroscopy for the study of fast protein dynamics.
    Davis CM; Reddish MJ; Dyer RB
    Spectrochim Acta A Mol Biomol Spectrosc; 2017 May; 178():185-191. PubMed ID: 28189834
    [TBL] [Abstract][Full Text] [Related]  

  • 58. New ultrarapid-scanning interferometer for FT-IR spectroscopy with microsecond time-resolution.
    Süss B; Ringleb F; Heberle J
    Rev Sci Instrum; 2016 Jun; 87(6):063113. PubMed ID: 27370432
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Fast IR laser mapping ellipsometry for the study of functional organic thin films.
    Furchner A; Sun G; Ketelsen H; Rappich J; Hinrichs K
    Analyst; 2015 Mar; 140(6):1791-7. PubMed ID: 25668189
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Coupling a Rapid-Scan FT-IR Spectrometer with Quantum Cascade Lasers within a Single Setup: An Easy Way to Reach Microsecond Time Resolution without Losing Spectral Information.
    Schnee J; Bazin P; Barviau B; Grisch F; Beccard BJ; Daturi M
    Anal Chem; 2019 Apr; 91(7):4368-4373. PubMed ID: 30807100
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.