These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 25014814)

  • 1. Quantum emitters near a metal nanoparticle: strong coupling and quenching.
    Delga A; Feist J; Bravo-Abad J; Garcia-Vidal FJ
    Phys Rev Lett; 2014 Jun; 112(25):253601. PubMed ID: 25014814
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interaction and Entanglement of a Pair of Quantum Emitters near a Nanoparticle: Analysis beyond Electric-Dipole Approximation.
    Kosik M; Słowik K
    Entropy (Basel); 2020 Jan; 22(2):. PubMed ID: 33285910
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deterministic Coupling of Quantum Emitters in 2D Materials to Plasmonic Nanocavity Arrays.
    Tran TT; Wang D; Xu ZQ; Yang A; Toth M; Odom TW; Aharonovich I
    Nano Lett; 2017 Apr; 17(4):2634-2639. PubMed ID: 28318263
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dipole-multipole plasmonic coupling between gold nanorods and titanium nitride nanoparticles for enhanced photothermal conversion.
    Xi M; Xu C; Zhong L; Liu C; Li N; Zhang S; Wang Z
    Phys Chem Chem Phys; 2024 Feb; 26(7):6196-6207. PubMed ID: 38305020
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Strong coupling in plasmonic metal nanoparticles.
    Lee YM; Kim SE; Park JE
    Nano Converg; 2023 Jul; 10(1):34. PubMed ID: 37470924
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Collective multipole oscillations direct the plasmonic coupling at the nanojunction interfaces.
    Hooshmand N; El-Sayed MA
    Proc Natl Acad Sci U S A; 2019 Sep; 116(39):19299-19304. PubMed ID: 31488713
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A discrete interaction model/quantum mechanical method to describe the interaction of metal nanoparticles and molecular absorption.
    Morton SM; Jensen L
    J Chem Phys; 2011 Oct; 135(13):134103. PubMed ID: 21992278
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cooperative emission of light by an ensemble of dipoles near a metal nanoparticle: the plasmonic Dicke effect.
    Pustovit VN; Shahbazyan TV
    Phys Rev Lett; 2009 Feb; 102(7):077401. PubMed ID: 19257713
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Control of quantum emitter-plasmon strong coupling and energy transport with external electrostatic fields.
    Gettapola K; Hapuarachchi H; Stockman MI; Premaratne M
    J Phys Condens Matter; 2020 Mar; 32(12):125301. PubMed ID: 31770745
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spatial coherence from Nd
    Fernández-Martínez J; Carretero-Palacios S; Sánchez-García L; Bravo-Abad J; Molina P; van Hoof N; Ramírez MO; Rivas JG; Bausá LE
    Opt Express; 2021 Aug; 29(16):26244-26254. PubMed ID: 34614934
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optical study of lithographically defined, subwavelength plasmonic wires and their coupling to embedded quantum emitters.
    Bracher G; Schraml K; Ossiander M; Frédérick S; Finley JJ; Kaniber M
    Nanotechnology; 2014 Feb; 25(7):075203. PubMed ID: 24452056
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhancement of and interference among higher order multipole transitions in molecules near a plasmonic nanoantenna.
    Rusak E; Straubel J; Gładysz P; Göddel M; Kędziorski A; Kühn M; Weigend F; Rockstuhl C; Słowik K
    Nat Commun; 2019 Dec; 10(1):5775. PubMed ID: 31852897
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Coupling Molecular Systems with Plasmonic Nanocavities: A Quantum Dynamics Approach.
    Jamshidi Z; Kargar K; Mendive-Tapia D; Vendrell O
    J Phys Chem Lett; 2023 Dec; 14(50):11367-11375. PubMed ID: 38078674
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On the use of plasmonic nanoparticle pairs as a plasmon ruler: the dependence of the near-field dipole plasmon coupling on nanoparticle size and shape.
    Tabor C; Murali R; Mahmoud M; El-Sayed MA
    J Phys Chem A; 2009 Mar; 113(10):1946-53. PubMed ID: 19090688
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phase imaging of transition from classical to quantum plasmonic couplings between a metal nanoparticle and a metal surface.
    Wang H; Yu H; Wang Y; Shan X; Chen HY; Tao N
    Proc Natl Acad Sci U S A; 2020 Jul; 117(30):17564-17570. PubMed ID: 32665434
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantized pseudomodes for plasmonic cavity QED.
    Hughes S; Richter M; Knorr A
    Opt Lett; 2018 Apr; 43(8):1834-1837. PubMed ID: 29652376
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhancing extraction of light from metal composite structures for plasmonic emitters using light-coupling effect.
    Chiu NF; Yang CD; Kao YL; Lu KL
    Opt Express; 2015 Apr; 23(8):9602-11. PubMed ID: 25968996
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Controlling collective spontaneous emission with plasmonic waveguides.
    Li Y; Argyropoulos C
    Opt Express; 2016 Nov; 24(23):26696-26708. PubMed ID: 27857400
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Vertical beaming of incoherent quantum emitters via the near-field coupling of Fano resonance.
    Hwang DW; Moon YJ; Cho JW; Kim SK
    Opt Lett; 2018 Oct; 43(20):5114-5117. PubMed ID: 30320833
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of orientation on plasmonic coupling between gold nanorods.
    Tabor C; Van Haute D; El-Sayed MA
    ACS Nano; 2009 Nov; 3(11):3670-8. PubMed ID: 19891438
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.