These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

302 related articles for article (PubMed ID: 25014829)

  • 41. Impact excitation and electron-hole multiplication in graphene and carbon nanotubes.
    Gabor NM
    Acc Chem Res; 2013 Jun; 46(6):1348-57. PubMed ID: 23369453
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Observation of Ultrafast Free Carrier Dynamics in Single Layer MoS2.
    Grubišić Čabo A; Miwa JA; Grønborg SS; Riley JM; Johannsen JC; Cacho C; Alexander O; Chapman RT; Springate E; Grioni M; Lauritsen JV; King PD; Hofmann P; Ulstrup S
    Nano Lett; 2015 Sep; 15(9):5883-7. PubMed ID: 26315566
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Confined Monolayer Ag As a Large Gap 2D Semiconductor and Its Momentum Resolved Excited States.
    Lee W; Wang Y; Qin W; Kim H; Liu M; Nunley TN; Fang B; Maniyara R; Dong C; Robinson JA; Crespi VH; Li X; MacDonald AH; Shih CK
    Nano Lett; 2022 Oct; 22(19):7841-7847. PubMed ID: 36126277
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Kinks in the σ band of graphene induced by electron-phonon coupling.
    Mazzola F; Wells JW; Yakimova R; Ulstrup S; Miwa JA; Balog R; Bianchi M; Leandersson M; Adell J; Hofmann P; Balasubramanian T
    Phys Rev Lett; 2013 Nov; 111(21):216806. PubMed ID: 24313515
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Two-Dimensional Dirac Fermions Protected by Space-Time Inversion Symmetry in Black Phosphorus.
    Kim J; Baik SS; Jung SW; Sohn Y; Ryu SH; Choi HJ; Yang BJ; Kim KS
    Phys Rev Lett; 2017 Dec; 119(22):226801. PubMed ID: 29286809
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Band structures of bilayer graphene superlattices.
    Killi M; Wu S; Paramekanti A
    Phys Rev Lett; 2011 Aug; 107(8):086801. PubMed ID: 21929188
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Electronic structure and relaxation dynamics in a superconducting topological material.
    Neupane M; Ishida Y; Sankar R; Zhu JX; Sanchez DS; Belopolski I; Xu SY; Alidoust N; Hosen MM; Shin S; Chou F; Hasan MZ; Durakiewicz T
    Sci Rep; 2016 Mar; 6():22557. PubMed ID: 26936229
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Peierls-type instability and tunable band gap in functionalized graphene.
    Abanin DA; Shytov AV; Levitov LS
    Phys Rev Lett; 2010 Aug; 105(8):086802. PubMed ID: 20868123
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Ultrafast dynamics. Attosecond band-gap dynamics in silicon.
    Schultze M; Ramasesha K; Pemmaraju CD; Sato SA; Whitmore D; Gandman A; Prell JS; Borja LJ; Prendergast D; Yabana K; Neumark DM; Leone SR
    Science; 2014 Dec; 346(6215):1348-52. PubMed ID: 25504716
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Massive Dirac fermions in single-layer graphene.
    Khveshchenko DV
    J Phys Condens Matter; 2009 Feb; 21(7):075303. PubMed ID: 21817324
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Electrically Tunable Nonequilibrium Optical Response of Graphene.
    Pogna EAA; Tomadin A; Balci O; Soavi G; Paradisanos I; Guizzardi M; Pedrinazzi P; Mignuzzi S; Tielrooij KJ; Polini M; Ferrari AC; Cerullo G
    ACS Nano; 2022 Mar; 16(3):3613-3624. PubMed ID: 35188753
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Tracking Primary Thermalization Events in Graphene with Photoemission at Extreme Time Scales.
    Gierz I; Calegari F; Aeschlimann S; Chávez Cervantes M; Cacho C; Chapman RT; Springate E; Link S; Starke U; Ast CR; Cavalleri A
    Phys Rev Lett; 2015 Aug; 115(8):086803. PubMed ID: 26340199
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Large band gap opening between graphene Dirac cones induced by Na adsorption onto an Ir superlattice.
    Papagno M; Rusponi S; Sheverdyaeva PM; Vlaic S; Etzkorn M; Pacilé D; Moras P; Carbone C; Brune H
    ACS Nano; 2012 Jan; 6(1):199-204. PubMed ID: 22136502
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Dirac model of electronic transport in graphene antidot barriers.
    Thomsen MR; Brun SJ; Pedersen TG
    J Phys Condens Matter; 2014 Aug; 26(33):335301. PubMed ID: 25071080
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Tailoring Dirac Fermions by In-Situ Tunable High-Order Moiré Pattern in Graphene-Monolayer Xenon Heterostructure.
    Wu C; Wan Q; Peng C; Mo S; Li R; Zhao K; Guo Y; Yuan S; Wu F; Zhang C; Xu N
    Phys Rev Lett; 2022 Oct; 129(17):176402. PubMed ID: 36332255
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Ultrafast electron-optical phonon scattering and quasiparticle lifetime in CVD-grown graphene.
    Shang J; Yu T; Lin J; Gurzadyan GG
    ACS Nano; 2011 Apr; 5(4):3278-83. PubMed ID: 21391596
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Band gap opening in methane intercalated graphene.
    Hargrove J; Shashikala HB; Guerrido L; Ravi N; Wang XQ
    Nanoscale; 2012 Aug; 4(15):4443-6. PubMed ID: 22695708
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A topological Dirac insulator in a quantum spin Hall phase.
    Hsieh D; Qian D; Wray L; Xia Y; Hor YS; Cava RJ; Hasan MZ
    Nature; 2008 Apr; 452(7190):970-4. PubMed ID: 18432240
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Band gap engineering for single-layer graphene by using slow Li(+) ions.
    Ryu M; Lee P; Kim J; Park H; Chung J
    Nanotechnology; 2016 Aug; 27(31):31LT03. PubMed ID: 27345294
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Observation of time-reversal-protected single-dirac-cone topological-insulator states in Bi2Te3 and Sb2Te3.
    Hsieh D; Xia Y; Qian D; Wray L; Meier F; Dil JH; Osterwalder J; Patthey L; Fedorov AV; Lin H; Bansil A; Grauer D; Hor YS; Cava RJ; Hasan MZ
    Phys Rev Lett; 2009 Oct; 103(14):146401. PubMed ID: 19905585
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.