These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 25015000)

  • 1. Periodic shock-emission from acoustically driven cavitation clouds: a source of the subharmonic signal.
    Johnston K; Tapia-Siles C; Gerold B; Postema M; Cochran S; Cuschieri A; Prentice P
    Ultrasonics; 2014 Dec; 54(8):2151-8. PubMed ID: 25015000
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterising the cavitation activity generated by an ultrasonic horn at varying tip-vibration amplitudes.
    Yusuf L; Symes MD; Prentice P
    Ultrason Sonochem; 2021 Jan; 70():105273. PubMed ID: 32795929
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Focused Ultrasound and Lithotripsy.
    Ikeda T; Yoshizawa S; Koizumi N; Mitsuishi M; Matsumoto Y
    Adv Exp Med Biol; 2016; 880():113-29. PubMed ID: 26486335
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deconvolution of acoustically detected bubble-collapse shock waves.
    Johansen K; Song JH; Johnston K; Prentice P
    Ultrasonics; 2017 Jan; 73():144-153. PubMed ID: 27657479
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Performance characterisation of a passive cavitation detector optimised for subharmonic periodic shock waves from acoustic cavitation in MHz and sub-MHz ultrasound.
    Johansen K; Song JH; Prentice P
    Ultrason Sonochem; 2018 May; 43():146-155. PubMed ID: 29555269
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cloud cavitation control for lithotripsy using high intensity focused ultrasound.
    Ikeda T; Yoshizawa S; Tosaki M; Allen JS; Takagi S; Ohta N; Kitamura T; Matsumoto Y
    Ultrasound Med Biol; 2006 Sep; 32(9):1383-97. PubMed ID: 16965979
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An analysis of the acoustic cavitation noise spectrum: The role of periodic shock waves.
    Song JH; Johansen K; Prentice P
    J Acoust Soc Am; 2016 Oct; 140(4):2494. PubMed ID: 27794293
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Covert cavitation: Spectral peak suppression in the acoustic emissions from spatially configured nucleations.
    Song JH; Johansen K; Prentice P
    J Acoust Soc Am; 2017 Mar; 141(3):EL216. PubMed ID: 28372105
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High intensity focused ultrasound lithotripsy with cavitating microbubbles.
    Yoshizawa S; Ikeda T; Ito A; Ota R; Takagi S; Matsumoto Y
    Med Biol Eng Comput; 2009 Aug; 47(8):851-60. PubMed ID: 19360448
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Non-linear Acoustic Emissions from Therapeutically Driven Contrast Agent Microbubbles.
    Song JH; Moldovan A; Prentice P
    Ultrasound Med Biol; 2019 Aug; 45(8):2188-2204. PubMed ID: 31085030
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-speed observation of bubble cloud generation near a rigid wall by second-harmonic superimposed ultrasound.
    Yoshizawa S; Yasuda J; Umemura S
    J Acoust Soc Am; 2013 Aug; 134(2):1515-20. PubMed ID: 23927191
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Jet formation and shock wave emission during collapse of ultrasound-induced cavitation bubbles and their role in the therapeutic applications of high-intensity focused ultrasound.
    Brujan EA; Ikeda T; Matsumoto Y
    Phys Med Biol; 2005 Oct; 50(20):4797-809. PubMed ID: 16204873
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spatial-temporal dynamics of cavitation bubble clouds in 1.2 MHz focused ultrasound field.
    Chen H; Li X; Wan M
    Ultrason Sonochem; 2006 Sep; 13(6):480-6. PubMed ID: 16571378
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A derivation of the stable cavitation threshold accounting for bubble-bubble interactions.
    Guédra M; Cornu C; Inserra C
    Ultrason Sonochem; 2017 Sep; 38():168-173. PubMed ID: 28633816
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multiple observations of cavitation cluster dynamics close to an ultrasonic horn tip.
    Birkin PR; Offin DG; Vian CJ; Leighton TG
    J Acoust Soc Am; 2011 Nov; 130(5):3379-88. PubMed ID: 22088011
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A dual passive cavitation detector for localized detection of lithotripsy-induced cavitation in vitro.
    Cleveland RO; Sapozhnikov OA; Bailey MR; Crum LA
    J Acoust Soc Am; 2000 Mar; 107(3):1745-58. PubMed ID: 10738826
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of frequency doubled double pulse Nd:YAG laser fiber proximity to the target stone on transient cavitation and acoustic emission.
    Fuh E; Haleblian GE; Norris RD; Albala WD; Simmons N; Zhong P; Preminger GM
    J Urol; 2007 Apr; 177(4):1542-5. PubMed ID: 17382775
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prediction and suppression of HIFU-induced vessel rupture using passive cavitation detection in an ex vivo model.
    Hoerig CL; Serrone JC; Burgess MT; Zuccarello M; Mast TD
    J Ther Ultrasound; 2014; 2():14. PubMed ID: 25232483
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cavitation clouds created by shock scattering from bubbles during histotripsy.
    Maxwell AD; Wang TY; Cain CA; Fowlkes JB; Sapozhnikov OA; Bailey MR; Xu Z
    J Acoust Soc Am; 2011 Oct; 130(4):1888-98. PubMed ID: 21973343
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Unsteady translation and repetitive jetting of acoustic cavitation bubbles.
    Nowak T; Mettin R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Sep; 90(3):033016. PubMed ID: 25314538
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.