These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 25015699)

  • 1. From assistance towards restoration with epidural brain-computer interfacing.
    Gharabaghi A; Naros G; Walter A; Grimm F; Schuermeyer M; Roth A; Bogdan M; Rosenstiel W; Birbaumer N
    Restor Neurol Neurosci; 2014; 32(4):517-25. PubMed ID: 25015699
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Learned self-regulation of the lesioned brain with epidural electrocorticography.
    Gharabaghi A; Naros G; Khademi F; Jesser J; Spüler M; Walter A; Bogdan M; Rosenstiel W; Birbaumer N
    Front Behav Neurosci; 2014; 8():429. PubMed ID: 25538591
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Brain-machine interfaces in neurorehabilitation of stroke.
    Soekadar SR; Birbaumer N; Slutzky MW; Cohen LG
    Neurobiol Dis; 2015 Nov; 83():172-9. PubMed ID: 25489973
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Decoding of motor intentions from epidural ECoG recordings in severely paralyzed chronic stroke patients.
    Spüler M; Walter A; Ramos-Murguialday A; Naros G; Birbaumer N; Gharabaghi A; Rosenstiel W; Bogdan M
    J Neural Eng; 2014 Dec; 11(6):066008. PubMed ID: 25358531
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Constraints and Adaptation of Closed-Loop Neuroprosthetics for Functional Restoration.
    Bauer R; Gharabaghi A
    Front Neurosci; 2017; 11():111. PubMed ID: 28348511
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reinforcement learning of self-regulated sensorimotor β-oscillations improves motor performance.
    Naros G; Naros I; Grimm F; Ziemann U; Gharabaghi A
    Neuroimage; 2016 Jul; 134():142-152. PubMed ID: 27046109
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of a combined, sequential real-time fMRI and fNIRS neurofeedback system to enhance motor learning after stroke.
    Rieke JD; Matarasso AK; Yusufali MM; Ravindran A; Alcantara J; White KD; Daly JJ
    J Neurosci Methods; 2020 Jul; 341():108719. PubMed ID: 32439425
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Closed-loop adaptation of neurofeedback based on mental effort facilitates reinforcement learning of brain self-regulation.
    Bauer R; Fels M; Royter V; Raco V; Gharabaghi A
    Clin Neurophysiol; 2016 Sep; 127(9):3156-3164. PubMed ID: 27474965
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Epidural electrocorticography of phantom hand movement following long-term upper-limb amputation.
    Gharabaghi A; Naros G; Walter A; Roth A; Bogdan M; Rosenstiel W; Mehring C; Birbaumer N
    Front Hum Neurosci; 2014; 8():285. PubMed ID: 24834047
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Asynchronous BCI based on motor imagery with automated calibration and neurofeedback training.
    Kus R; Valbuena D; Zygierewicz J; Malechka T; Graeser A; Durka P
    IEEE Trans Neural Syst Rehabil Eng; 2012 Nov; 20(6):823-35. PubMed ID: 23033330
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The emerging world of motor neuroprosthetics: a neurosurgical perspective.
    Leuthardt EC; Schalk G; Moran D; Ojemann JG
    Neurosurgery; 2006 Jul; 59(1):1-14; discussion 1-14. PubMed ID: 16823294
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Physiological regulation of thinking: brain-computer interface (BCI) research.
    Birbaumer N; Weber C; Neuper C; Buch E; Haapen K; Cohen L
    Prog Brain Res; 2006; 159():369-91. PubMed ID: 17071243
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Breaking the silence: brain-computer interfaces (BCI) for communication and motor control.
    Birbaumer N
    Psychophysiology; 2006 Nov; 43(6):517-32. PubMed ID: 17076808
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cortical neuroprosthetics from a clinical perspective.
    Tsu AP; Burish MJ; GodLove J; Ganguly K
    Neurobiol Dis; 2015 Nov; 83():154-60. PubMed ID: 26253606
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Volitional Control of Brain Motor Activity and Its Therapeutic Potential.
    Girges C; Vijiaratnam N; Zrinzo L; Ekanayake J; Foltynie T
    Neuromodulation; 2022 Dec; 25(8):1187-1196. PubMed ID: 35241365
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A brain-computer interface using electrocorticographic signals in humans.
    Leuthardt EC; Schalk G; Wolpaw JR; Ojemann JG; Moran DW
    J Neural Eng; 2004 Jun; 1(2):63-71. PubMed ID: 15876624
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Brain-machine interfaces: past, present and future.
    Lebedev MA; Nicolelis MA
    Trends Neurosci; 2006 Sep; 29(9):536-46. PubMed ID: 16859758
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Brain-machine interfaces: computational demands and clinical needs meet basic neuroscience.
    Mussa-Ivaldi FA; Miller LE
    Trends Neurosci; 2003 Jun; 26(6):329-34. PubMed ID: 12798603
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Continuous shared control for stabilizing reaching and grasping with brain-machine interfaces.
    Kim HK; Biggs SJ; Schloerb DW; Carmena JM; Lebedev MA; Nicolelis MA; Srinivasan MA
    IEEE Trans Biomed Eng; 2006 Jun; 53(6):1164-73. PubMed ID: 16761843
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Brain-controlled interfaces: movement restoration with neural prosthetics.
    Schwartz AB; Cui XT; Weber DJ; Moran DW
    Neuron; 2006 Oct; 52(1):205-20. PubMed ID: 17015237
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.