BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 25015888)

  • 1. Effect of lineage-specific metabolic traits of Lactobacillus reuteri on sourdough microbial ecology.
    Lin XB; Gänzle MG
    Appl Environ Microbiol; 2014 Sep; 80(18):5782-9. PubMed ID: 25015888
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Contribution of glutamate decarboxylase in Lactobacillus reuteri to acid resistance and persistence in sourdough fermentation.
    Su MS; Schlicht S; Gänzle MG
    Microb Cell Fact; 2011 Aug; 10 Suppl 1(Suppl 1):S8. PubMed ID: 21995488
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative high-resolution melting PCR analysis for monitoring of fermentation microbiota in sourdough.
    Lin XB; Gänzle MG
    Int J Food Microbiol; 2014 Sep; 186():42-8. PubMed ID: 24984221
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microbial ecology of sorghum sourdoughs: effect of substrate supply and phenolic compounds on composition of fermentation microbiota.
    Sekwati-Monang B; Valcheva R; Gänzle MG
    Int J Food Microbiol; 2012 Oct; 159(3):240-6. PubMed ID: 23107503
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lifestyles of sourdough lactobacilli - Do they matter for microbial ecology and bread quality?
    Gänzle MG; Zheng J
    Int J Food Microbiol; 2019 Aug; 302():15-23. PubMed ID: 30172443
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis of Taste-Active γ-Glutamyl Dipeptides during Sourdough Fermentation by Lactobacillus reuteri.
    Zhao CJ; Gänzle MG
    J Agric Food Chem; 2016 Oct; 64(40):7561-7568. PubMed ID: 27641253
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Contribution of glutaminases to glutamine metabolism and acid resistance in Lactobacillus reuteri and other vertebrate host adapted lactobacilli.
    Li Q; Tao Q; Teixeira JS; Shu-Wei Su M; Gänzle MG
    Food Microbiol; 2020 Apr; 86():103343. PubMed ID: 31703887
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Glutamine, glutamate, and arginine-based acid resistance in Lactobacillus reuteri.
    Teixeira JS; Seeras A; Sanchez-Maldonado AF; Zhang C; Su MS; Gänzle MG
    Food Microbiol; 2014 Sep; 42():172-80. PubMed ID: 24929734
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of growth, metabolism and production of potentially bioactive components during fermentation of barley with Lactobacillus reuteri.
    Pallin A; Agback P; Jonsson H; Roos S
    Food Microbiol; 2016 Aug; 57():159-71. PubMed ID: 27052715
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Composition and function of sourdough microbiota: From ecological theory to bread quality.
    Gänzle M; Ripari V
    Int J Food Microbiol; 2016 Dec; 239():19-25. PubMed ID: 27240932
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative genomics Lactobacillus reuteri from sourdough reveals adaptation of an intestinal symbiont to food fermentations.
    Zheng J; Zhao X; Lin XB; Gänzle M
    Sci Rep; 2015 Dec; 5():18234. PubMed ID: 26658825
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metabolic pathway of α-ketoglutarate in Lactobacillus sanfranciscensis and Lactobacillus reuteri during sourdough fermentation.
    Zhang C; Gänzle MG
    J Appl Microbiol; 2010 Oct; 109(4):1301-10. PubMed ID: 20477886
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metabolism of phenolic acids in whole wheat and rye malt sourdoughs.
    Ripari V; Bai Y; Gänzle MG
    Food Microbiol; 2019 Feb; 77():43-51. PubMed ID: 30297055
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Contribution of reutericyclin production to the stable persistence of Lactobacillus reuteri in an industrial sourdough fermentation.
    Gänzle MG; Vogel RF
    Int J Food Microbiol; 2003 Jan; 80(1):31-45. PubMed ID: 12430769
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Glutathione reductase from Lactobacillus sanfranciscensis DSM20451T: contribution to oxygen tolerance and thiol exchange reactions in wheat sourdoughs.
    Jänsch A; Korakli M; Vogel RF; Gänzle MG
    Appl Environ Microbiol; 2007 Jul; 73(14):4469-76. PubMed ID: 17496130
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Global transcriptional response of Lactobacillus reuteri to the sourdough environment.
    Hüfner E; Britton RA; Roos S; Jonsson H; Hertel C
    Syst Appl Microbiol; 2008 Oct; 31(5):323-38. PubMed ID: 18762399
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The addition of citrate stimulates the production of acetoin and diacetyl by a citrate-positive Lactobacillus crustorum strain during wheat sourdough fermentation.
    Comasio A; Harth H; Weckx S; De Vuyst L
    Int J Food Microbiol; 2019 Jan; 289():88-105. PubMed ID: 30218873
    [TBL] [Abstract][Full Text] [Related]  

  • 18. γ-Glutamyl Cysteine Ligase of Lactobacillus reuteri Synthesizes γ-Glutamyl Dipeptides in Sourdough.
    Yan B; Chen YY; Wang W; Zhao J; Chen W; Gänzle M
    J Agric Food Chem; 2018 Nov; 66(46):12368-12375. PubMed ID: 30354106
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genetic and phenotypic analysis of carbohydrate metabolism and transport in Lactobacillus reuteri.
    Zhao X; Gänzle MG
    Int J Food Microbiol; 2018 May; 272():12-21. PubMed ID: 29505955
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Flux analysis of the Lactobacillus reuteri propanediol-utilization pathway for production of 3-hydroxypropionaldehyde, 3-hydroxypropionic acid and 1,3-propanediol from glycerol.
    Dishisha T; Pereyra LP; Pyo SH; Britton RA; Hatti-Kaul R
    Microb Cell Fact; 2014 May; 13():76. PubMed ID: 24886501
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.