These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

71 related articles for article (PubMed ID: 25016258)

  • 21. KnotSeeker: heuristic pseudoknot detection in long RNA sequences.
    Sperschneider J; Datta A
    RNA; 2008 Apr; 14(4):630-40. PubMed ID: 18314500
    [TBL] [Abstract][Full Text] [Related]  

  • 22. ATTfold: RNA Secondary Structure Prediction With Pseudoknots Based on Attention Mechanism.
    Wang Y; Liu Y; Wang S; Liu Z; Gao Y; Zhang H; Dong L
    Front Genet; 2020; 11():612086. PubMed ID: 33384721
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Sequence comparison and secondary structure analysis of the 3' noncoding region of flavivirus genomes reveals multiple pseudoknots.
    Olsthoorn RC; Bol JF
    RNA; 2001 Oct; 7(10):1370-7. PubMed ID: 11680841
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A database of flavivirus RNA structures with a search algorithm for pseudoknots and triple base interactions.
    Zammit A; Helwerda L; Olsthoorn RCL; Verbeek FJ; Gultyaev AP
    Bioinformatics; 2021 May; 37(7):956-962. PubMed ID: 32866223
    [TBL] [Abstract][Full Text] [Related]  

  • 25. An algorithm for computing nucleic acid base-pairing probabilities including pseudoknots.
    Dirks RM; Pierce NA
    J Comput Chem; 2004 Jul; 25(10):1295-304. PubMed ID: 15139042
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure.
    Mathews DH; Sabina J; Zuker M; Turner DH
    J Mol Biol; 1999 May; 288(5):911-40. PubMed ID: 10329189
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Dynalign: an algorithm for finding the secondary structure common to two RNA sequences.
    Mathews DH; Turner DH
    J Mol Biol; 2002 Mar; 317(2):191-203. PubMed ID: 11902836
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Nuclear Magnetic Resonance-Assisted Prediction of Secondary Structure for RNA: Incorporation of Direction-Dependent Chemical Shift Constraints.
    Chen JL; Bellaousov S; Tubbs JD; Kennedy SD; Lopez MJ; Mathews DH; Turner DH
    Biochemistry; 2015 Nov; 54(45):6769-82. PubMed ID: 26451676
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Thermodynamic heuristics with case-based reasoning: combined insights for RNA pseudoknot secondary structure.
    Al-Khatib RM; Rashid NA; Abdullah R
    J Biomol Struct Dyn; 2011 Aug; 29(1):1-26. PubMed ID: 21696223
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Graph-theoretic approach to RNA modeling using comparative data.
    Cary RB; Stormo GD
    Proc Int Conf Intell Syst Mol Biol; 1995; 3():75-80. PubMed ID: 7584469
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Accurate SHAPE-directed RNA secondary structure modeling, including pseudoknots.
    Hajdin CE; Bellaousov S; Huggins W; Leonard CW; Mathews DH; Weeks KM
    Proc Natl Acad Sci U S A; 2013 Apr; 110(14):5498-503. PubMed ID: 23503844
    [TBL] [Abstract][Full Text] [Related]  

  • 32. An efficient simulated annealing algorithm for the RNA secondary structure prediction with Pseudoknots.
    Kai Z; Yuting W; Yulin L; Jun L; Juanjuan H
    BMC Genomics; 2019 Dec; 20(Suppl 13):979. PubMed ID: 31881969
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A graph theoretical approach for predicting common RNA secondary structure motifs including pseudoknots in unaligned sequences.
    Ji Y; Xu X; Stormo GD
    Bioinformatics; 2004 Jul; 20(10):1591-602. PubMed ID: 14962926
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A permutation based simulated annealing algorithm to predict pseudoknotted RNA secondary structures.
    Tsang HH; Wiese KC
    Int J Bioinform Res Appl; 2015; 11(5):375-96. PubMed ID: 26558299
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Revolutions in RNA secondary structure prediction.
    Mathews DH
    J Mol Biol; 2006 Jun; 359(3):526-32. PubMed ID: 16500677
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A class of 2D graphical representations of RNA secondary structures and the analysis of similarity based on them.
    Yao YH; Nan XY; Wang TM
    J Comput Chem; 2005 Oct; 26(13):1339-46. PubMed ID: 16021599
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Rapid ab initio prediction of RNA pseudoknots via graph tree decomposition.
    Zhao J; Malmberg RL; Cai L
    J Math Biol; 2008 Jan; 56(1-2):145-59. PubMed ID: 17906862
    [TBL] [Abstract][Full Text] [Related]  

  • 38. An RNA folding method capable of identifying pseudoknots and base triples.
    Tabaska JE; Cary RB; Gabow HN; Stormo GD
    Bioinformatics; 1998; 14(8):691-9. PubMed ID: 9789095
    [TBL] [Abstract][Full Text] [Related]  

  • 39. RNA-mediated translation regulation in viral genomes: computational advances in the recognition of sequences and structures.
    Gupta A; Bansal M
    Brief Bioinform; 2020 Jul; 21(4):1151-1163. PubMed ID: 31204430
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A Dynamic 3D Graphical Representation for RNA Structure Analysis and Its Application in Non-Coding RNA Classification.
    Zhang Y; Huang H; Dong X; Fang Y; Wang K; Zhu L; Wang K; Huang T; Yang J
    PLoS One; 2016; 11(5):e0152238. PubMed ID: 27213271
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.