BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 25016298)

  • 1. Chelating polymer modified P84 nanofiltration (NF) hollow fiber membranes for high efficient heavy metal removal.
    Gao J; Sun SP; Zhu WP; Chung TS
    Water Res; 2014 Oct; 63():252-61. PubMed ID: 25016298
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hyperbranched polyethyleneimine induced cross-linking of polyamide-imide nanofiltration hollow fiber membranes for effective removal of ciprofloxacin.
    Sun SP; Hatton TA; Chung TS
    Environ Sci Technol; 2011 May; 45(9):4003-9. PubMed ID: 21456576
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Novel nanofiltration membranes consisting of a sulfonated pentablock copolymer rejection layer for heavy metal removal.
    Thong Z; Han G; Cui Y; Gao J; Chung TS; Chan SY; Wei S
    Environ Sci Technol; 2014 Dec; 48(23):13880-7. PubMed ID: 25369240
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anti-organic fouling and anti-biofouling poly(piperazineamide) thin film nanocomposite membranes for low pressure removal of heavy metal ions.
    Bera A; Trivedi JS; Kumar SB; Chandel AKS; Haldar S; Jewrajka SK
    J Hazard Mater; 2018 Feb; 343():86-97. PubMed ID: 28946135
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metal ions removal from wastewater or washing water from contaminated soil by ultrafiltration-complexation.
    Molinari R; Gallo S; Argurio P
    Water Res; 2004 Feb; 38(3):593-600. PubMed ID: 14723928
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improvement of heavy metal separation performance by positively charged small-sized graphene oxide membrane.
    Zheng B; Jia S; Tian Y
    Environ Technol; 2024 May; 45(13):2471-2485. PubMed ID: 36730831
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Removal of chromium ions from aqueous solutions by polymer-enhanced ultrafiltration.
    Aroua MK; Zuki FM; Sulaiman NM
    J Hazard Mater; 2007 Aug; 147(3):752-8. PubMed ID: 17339078
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-performance cellulose acetate/polysulfone blend ultrafiltration membranes for removal of heavy metals from water.
    Moradihamedani P; Abdullah AH
    Water Sci Technol; 2017 May; 75(10):2422-2433. PubMed ID: 28541950
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Removal of Cu(II) in water by polymer enhanced ultrafiltration: Influence of polymer nature and pH.
    Kochkodan OD; Kochkodan VM; Sharma VK
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2018 Jan; 53(1):33-38. PubMed ID: 29053931
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Separation of macromolecular proteins and rejection of toxic heavy metal ions by PEI/cSMM blend UF membranes.
    Kanagaraj P; Nagendran A; Rana D; Matsuura T; Neelakandan S
    Int J Biol Macromol; 2015 Jan; 72():223-9. PubMed ID: 25159885
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Removal of manganese from water using combined chelation/membrane separation systems.
    Han SC; Choo KH; Choi SJ; Benjamin MM
    Water Sci Technol; 2005; 51(6-7):349-55. PubMed ID: 16003996
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biocompatible Fe
    Kamari S; Shahbazi A
    Chemosphere; 2020 Mar; 243():125282. PubMed ID: 31734593
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effective removal of heavy metal ions Cd2+, Zn2+, Pb2+, Cu2+ from aqueous solution by polymer-modified magnetic nanoparticles.
    Ge F; Li MM; Ye H; Zhao BX
    J Hazard Mater; 2012 Apr; 211-212():366-72. PubMed ID: 22209322
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanometric Graphene Oxide Framework Membranes with Enhanced Heavy Metal Removal via Nanofiltration.
    Zhang Y; Zhang S; Chung TS
    Environ Sci Technol; 2015 Aug; 49(16):10235-42. PubMed ID: 26197200
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chelating fibers prepared with a wet spinning technique using a mixture of a viscose solution and a polymer ligand for the separation of metal ions in an aqueous solution.
    Kagaya S; Miyazaki H; Inoue Y; Kato T; Yanai H; Kamichatani W; Kajiwara T; Saito M; Tohda K
    J Hazard Mater; 2012 Feb; 203-204():370-3. PubMed ID: 22209589
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of surface modification of microfiltration membrane on capture of toxic heavy metal ions.
    Madaeni SS; Heidary F
    Environ Technol; 2012; 33(4-6):393-9. PubMed ID: 22629610
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Removal of Co(II) and Ni(II) ions from contaminated water using silica gel functionalized with EDTA and/or DTPA as chelating agents.
    Repo E; Kurniawan TA; Warchol JK; Sillanpää ME
    J Hazard Mater; 2009 Nov; 171(1-3):1071-80. PubMed ID: 19632777
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Study on the treatment of wastewater containing mercury by macromolecular heavy metal flocculant mercaptoacetyl polyethyleneimine.
    Min X; Qing C; Jinjin C
    Water Environ Res; 2010; 82(9):790-6. PubMed ID: 20942334
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improved performance of a chitosan-based adsorbent for the sequestration of some transition metals.
    Navarro RR; Tatsumi K
    Water Sci Technol; 2001; 43(11):9-16. PubMed ID: 11443991
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Amine-terminated dendritic polymers as a multifunctional chelating agent for heavy metal ion removals.
    Mohseni M; Akbari S; Pajootan E; Mazaheri F
    Environ Sci Pollut Res Int; 2019 May; 26(13):12689-12697. PubMed ID: 30877542
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.