These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
249 related articles for article (PubMed ID: 25016321)
1. Bacterial adhesion onto nanofiltration and reverse osmosis membranes: effect of permeate flux. Semião AJ; Habimana O; Casey E Water Res; 2014 Oct; 63():296-305. PubMed ID: 25016321 [TBL] [Abstract][Full Text] [Related]
2. The importance of laboratory water quality for studying initial bacterial adhesion during NF filtration processes. Semião AJ; Habimana O; Cao H; Heffernan R; Safari A; Casey E Water Res; 2013 May; 47(8):2909-20. PubMed ID: 23541307 [TBL] [Abstract][Full Text] [Related]
3. A physical impact of organic fouling layers on bacterial adhesion during nanofiltration. Heffernan R; Habimana O; Semião AJ; Cao H; Safari A; Casey E Water Res; 2014 Dec; 67():118-28. PubMed ID: 25265304 [TBL] [Abstract][Full Text] [Related]
4. Direct observation of bacterial deposition onto clean and organic-fouled polyamide membranes. Subramani A; Huang X; Hoek EM J Colloid Interface Sci; 2009 Aug; 336(1):13-20. PubMed ID: 19406423 [TBL] [Abstract][Full Text] [Related]
5. Fouling of reverse osmosis and nanofiltration membranes by dairy industry effluents. Turan M; Ates A; Inanc B Water Sci Technol; 2002; 45(12):355-60. PubMed ID: 12201123 [TBL] [Abstract][Full Text] [Related]
6. Impact of organic nutrient load on biomass accumulation, feed channel pressure drop increase and permeate flux decline in membrane systems. Bucs SS; Valladares Linares R; van Loosdrecht MC; Kruithof JC; Vrouwenvelder JS Water Res; 2014 Dec; 67():227-42. PubMed ID: 25282091 [TBL] [Abstract][Full Text] [Related]
7. Characterization and effect of biofouling on polyamide reverse osmosis and nanofiltration membrane surfaces. Khan MM; Stewart PS; Moll DJ; Mickols WE; Nelson SE; Camper AK Biofouling; 2011 Feb; 27(2):173-83. PubMed ID: 21253926 [TBL] [Abstract][Full Text] [Related]
8. Upon impact: the fate of adhering Pseudomonas fluorescens cells during nanofiltration. Habimana O; Semião AJ; Casey E Environ Sci Technol; 2014 Aug; 48(16):9641-50. PubMed ID: 25072514 [TBL] [Abstract][Full Text] [Related]
9. Biofilm recruitment under nanofiltration conditions: the influence of resident biofilm structural parameters on planktonic cell invasion. Habimana O; Casey E Microb Biotechnol; 2018 Jan; 11(1):264-267. PubMed ID: 29194975 [TBL] [Abstract][Full Text] [Related]
10. Fouling of nanofiltration, reverse osmosis, and ultrafiltration membranes by protein mixtures: the role of inter-foulant-species interaction. Wang YN; Tang CY Environ Sci Technol; 2011 Aug; 45(15):6373-9. PubMed ID: 21678956 [TBL] [Abstract][Full Text] [Related]
11. Gravity-driven membrane filtration as pretreatment for seawater reverse osmosis: linking biofouling layer morphology with flux stabilization. Akhondi E; Wu B; Sun S; Marxer B; Lim W; Gu J; Liu L; Burkhardt M; McDougald D; Pronk W; Fane AG Water Res; 2015 Mar; 70():158-73. PubMed ID: 25528546 [TBL] [Abstract][Full Text] [Related]
12. In-situ biofilm characterization in membrane systems using Optical Coherence Tomography: formation, structure, detachment and impact of flux change. Dreszer C; Wexler AD; Drusová S; Overdijk T; Zwijnenburg A; Flemming HC; Kruithof JC; Vrouwenvelder JS Water Res; 2014 Dec; 67():243-54. PubMed ID: 25282092 [TBL] [Abstract][Full Text] [Related]
13. Bacterial attachment to RO membranes surface-modified by concentration-polarization-enhanced graft polymerization. Bernstein R; Belfer S; Freger V Environ Sci Technol; 2011 Jul; 45(14):5973-80. PubMed ID: 21682251 [TBL] [Abstract][Full Text] [Related]
14. Role of extracellular polymeric substances (EPS) in biofouling of reverse osmosis membranes. Herzberg M; Kang S; Elimelech M Environ Sci Technol; 2009 Jun; 43(12):4393-8. PubMed ID: 19603652 [TBL] [Abstract][Full Text] [Related]
15. Feasibility of supercritical CO₂ treatment for controlling biofouling in the reverse osmosis process. Mun S; Baek Y; Kim C; Lee YW; Yoon J Biofouling; 2012; 28(6):627-33. PubMed ID: 22726211 [TBL] [Abstract][Full Text] [Related]
16. Impact of higher alginate expression on deposition of Pseudomonas aeruginosa in radial stagnation point flow and reverse osmosis systems. Herzberg M; Rezene TZ; Ziemba C; Gillor O; Mathee K Environ Sci Technol; 2009 Oct; 43(19):7376-83. PubMed ID: 19848149 [TBL] [Abstract][Full Text] [Related]
17. Combined coagulation-disk filtration process as a pretreatment of ultrafiltration and reverse osmosis membrane for wastewater reclamation: an autopsy study of a pilot plant. Chon K; Kim SJ; Moon J; Cho J Water Res; 2012 Apr; 46(6):1803-16. PubMed ID: 22310806 [TBL] [Abstract][Full Text] [Related]
18. Systematic analysis of micromixers to minimize biofouling on reverse osmosis membranes. Altman SJ; McGrath LK; Jones HD; Sanchez A; Noek R; Clem P; Cook A; Ho CK Water Res; 2010 Jun; 44(12):3545-54. PubMed ID: 20493509 [TBL] [Abstract][Full Text] [Related]
19. Biofouling of reverse osmosis membranes: positively contributing factors of Sphingomonas. Gutman J; Herzberg M; Walker SL Environ Sci Technol; 2014 Dec; 48(23):13941-50. PubMed ID: 25354089 [TBL] [Abstract][Full Text] [Related]
20. Vacuum membrane distillation of seawater reverse osmosis brines. Mericq JP; Laborie S; Cabassud C Water Res; 2010 Oct; 44(18):5260-73. PubMed ID: 20659753 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]