These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 25016485)

  • 1. Adaptive velocity-based six degree of freedom load control for real-time unconstrained biomechanical testing.
    Lawless IM; Ding B; Cazzolato BS; Costi JJ
    J Biomech; 2014 Sep; 47(12):3241-7. PubMed ID: 25016485
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design and validation of a novel Cartesian biomechanical testing system with coordinated 6DOF real-time load control: application to the lumbar spine (L1-S, L4-L5).
    Kelly BP; Bennett CR
    J Biomech; 2013 Jul; 46(11):1948-54. PubMed ID: 23764173
    [TBL] [Abstract][Full Text] [Related]  

  • 3. New methodology for multi-dimensional spinal joint testing with a parallel robot.
    Walker MR; Dickey JP
    Med Biol Eng Comput; 2007 Mar; 45(3):297-304. PubMed ID: 17235615
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of six degree of freedom loading sequence on the in-vitro compressive properties of human lumbar spine segments.
    Amin DB; Lawless IM; Sommerfeld D; Stanley RM; Ding B; Costi JJ
    J Biomech; 2016 Oct; 49(14):3407-3414. PubMed ID: 27663622
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Robotic application of a dynamic resultant force vector using real-time load-control: simulation of an ideal follower load on Cadaveric L4-L5 segments.
    Bennett CR; Kelly BP
    J Biomech; 2013 Aug; 46(12):2087-92. PubMed ID: 23809771
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel application of velocity-based force control for use in robotic biomechanical testing.
    Goertzen DJ; Kawchuk GN
    J Biomech; 2009 Feb; 42(3):366-9. PubMed ID: 19124128
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Research of joint-robotics-based design of biomechanics testing device on human spine].
    Deng G; Tian L; Mao Z
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2009 Dec; 26(6):1246-9. PubMed ID: 20095479
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A robotic testing facility for the measurement of the mechanics of spinal joints.
    de Visser H; Rowe C; Pearcy M
    Proc Inst Mech Eng H; 2007 Apr; 221(3):221-7. PubMed ID: 17539578
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization and prediction of rate-dependent flexibility in lumbar spine biomechanics at room and body temperature.
    Stolworthy DK; Zirbel SA; Howell LL; Samuels M; Bowden AE
    Spine J; 2014 May; 14(5):789-98. PubMed ID: 24290312
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vitro spine testing using a robot-based testing system: comparison of displacement control and "hybrid control".
    Bell KM; Hartman RA; Gilbertson LG; Kang JD
    J Biomech; 2013 Jun; 46(10):1663-9. PubMed ID: 23702044
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biomechanical response of lumbar facet joints under follower preload: a finite element study.
    Du CF; Yang N; Guo JC; Huang YP; Zhang C
    BMC Musculoskelet Disord; 2016 Mar; 17():126. PubMed ID: 26980002
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel application of direct force control to perform in-vitro biomechanical tests using robotic technology.
    Martínez H; Obst T; Ulbrich H; Burgkart R
    J Biomech; 2013 Apr; 46(7):1379-82. PubMed ID: 23537999
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of three force-position hybrid control methods for a robot-based biological joint-testing system.
    Hsieh HJ; Hu CC; Lu TW; Lu HL; Kuo MY; Kuo CC; Hsu HC
    Biomed Eng Online; 2016 Jun; 15(1):62. PubMed ID: 27268070
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Use of Robotic Manipulators to Study Diarthrodial Joint Function.
    Debski RE; Yamakawa S; Musahl V; Fujie H
    J Biomech Eng; 2017 Feb; 139(2):. PubMed ID: 28056127
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamic, six-axis stiffness matrix characteristics of the intact intervertebral disc and a disc replacement.
    Holsgrove TP; Gill HS; Miles AW; Gheduzzi S
    Proc Inst Mech Eng H; 2015 Nov; 229(11):769-77. PubMed ID: 26503838
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An alternative measurement tool for the identification of hysteretic responses in biological joints.
    Borkowski SL; Sangiorgio SN; Ebramzadeh E; Masri SF
    J Mech Behav Biomed Mater; 2014 Nov; 39():270-8. PubMed ID: 25151448
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanical response of the lumbar intervertebral joint under physiological (complex) loading.
    Lin HS; Liu YK; Adams KH
    J Bone Joint Surg Am; 1978 Jan; 60(1):41-55. PubMed ID: 624758
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improvement of accuracy in a high-capacity, six degree-of-freedom load cell: application to robotic testing of musculoskeletal joints.
    Gilbertson LG; Doehring TC; Livesay GA; Rudy TW; Kang JD; Woo SL
    Ann Biomed Eng; 1999; 27(6):839-43. PubMed ID: 10625155
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sagittal rotational stiffness and damping increase in a porcine lumbar spine with increased or prolonged loading.
    Zondervan RL; Popovich JM; Radcliffe CJ; Pathak PK; Reeves NP
    J Biomech; 2016 Feb; 49(4):624-7. PubMed ID: 26892899
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vitro validation of a novel mechanical model for testing the anchorage capacity of pedicle screws using physiological load application.
    Liebsch C; Zimmermann J; Graf N; Schilling C; Wilke HJ; Kienle A
    J Mech Behav Biomed Mater; 2018 Jan; 77():578-585. PubMed ID: 29096123
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.