These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
263 related articles for article (PubMed ID: 25016691)
1. Metformin suppresses lipid accumulation in skeletal muscle by promoting fatty acid oxidation. Wang C; Liu F; Yuan Y; Wu J; Wang H; Zhang L; Hu P; Li Z; Li Q; Ye J Clin Lab; 2014; 60(6):887-96. PubMed ID: 25016691 [TBL] [Abstract][Full Text] [Related]
2. Effect of metformin on bioactive lipid metabolism in insulin-resistant muscle. Zabielski P; Chacinska M; Charkiewicz K; Baranowski M; Gorski J; Blachnio-Zabielska AU J Endocrinol; 2017 Jun; 233(3):329-340. PubMed ID: 28522731 [TBL] [Abstract][Full Text] [Related]
3. Activation of the AMPK/Sirt1 pathway by a leucine-metformin combination increases insulin sensitivity in skeletal muscle, and stimulates glucose and lipid metabolism and increases life span in Caenorhabditis elegans. Banerjee J; Bruckbauer A; Zemel MB Metabolism; 2016 Nov; 65(11):1679-1691. PubMed ID: 27456392 [TBL] [Abstract][Full Text] [Related]
4. Yhhu981, a novel compound, stimulates fatty acid oxidation via the activation of AMPK and ameliorates lipid metabolism disorder in ob/ob mice. Zeng HL; Huang SL; Xie FC; Zeng LM; Hu YH; Leng Y Acta Pharmacol Sin; 2015 Mar; 36(3):343-52. PubMed ID: 25732571 [TBL] [Abstract][Full Text] [Related]
5. Dexamethasone facilitates lipid accumulation and mild feed restriction improves fatty acids oxidation in skeletal muscle of broiler chicks (Gallus gallus domesticus). Wang X; Lin H; Song Z; Jiao H Comp Biochem Physiol C Toxicol Pharmacol; 2010 May; 151(4):447-54. PubMed ID: 20138241 [TBL] [Abstract][Full Text] [Related]
6. Metformin and exercise reduce muscle FAT/CD36 and lipid accumulation and blunt the progression of high-fat diet-induced hyperglycemia. Smith AC; Mullen KL; Junkin KA; Nickerson J; Chabowski A; Bonen A; Dyck DJ Am J Physiol Endocrinol Metab; 2007 Jul; 293(1):E172-81. PubMed ID: 17374701 [TBL] [Abstract][Full Text] [Related]
7. Triglycerides, fatty acids and insulin resistance--hyperinsulinemia. Kraegen EW; Cooney GJ; Ye J; Thompson AL Exp Clin Endocrinol Diabetes; 2001; 109(4):S516-26. PubMed ID: 11453039 [TBL] [Abstract][Full Text] [Related]
8. Extremely rapid increase in fatty acid transport and intramyocellular lipid accumulation but markedly delayed insulin resistance after high fat feeding in rats. Bonen A; Jain SS; Snook LA; Han XX; Yoshida Y; Buddo KH; Lally JS; Pask ED; Paglialunga S; Beaudoin MS; Glatz JF; Luiken JJ; Harasim E; Wright DC; Chabowski A; Holloway GP Diabetologia; 2015 Oct; 58(10):2381-91. PubMed ID: 26197708 [TBL] [Abstract][Full Text] [Related]
9. Excess lipid availability increases mitochondrial fatty acid oxidative capacity in muscle: evidence against a role for reduced fatty acid oxidation in lipid-induced insulin resistance in rodents. Turner N; Bruce CR; Beale SM; Hoehn KL; So T; Rolph MS; Cooney GJ Diabetes; 2007 Aug; 56(8):2085-92. PubMed ID: 17519422 [TBL] [Abstract][Full Text] [Related]
10. Short-term GLP-1 receptor agonist exenatide ameliorates intramyocellular lipid deposition without weight loss in ob/ob mice. Xu F; Cao H; Chen Z; Gu H; Guo W; Lin B; Weng J Int J Obes (Lond); 2020 Apr; 44(4):937-947. PubMed ID: 31911662 [TBL] [Abstract][Full Text] [Related]
11. Effect of puerarin in promoting fatty acid oxidation by increasing mitochondrial oxidative capacity and biogenesis in skeletal muscle in diabetic rats. Chen XF; Wang L; Wu YZ; Song SY; Min HY; Yang Y; He X; Liang Q; Yi L; Wang Y; Gao Q Nutr Diabetes; 2018 Jan; 8(1):1. PubMed ID: 29330446 [TBL] [Abstract][Full Text] [Related]