BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 25016807)

  • 1. [Small molecular compounds for BCR/ABL-negative myeloproliferative neoplasms].
    Nagai T
    Nihon Rinsho; 2014 Jun; 72(6):1073-8. PubMed ID: 25016807
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Not Available].
    Soret J; Kiladjian JJ
    Bull Cancer; 2016 Jun; 103(6 Suppl 1):S29-38. PubMed ID: 27494970
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Expansion of a BCR-ABL clone in a JAK2 V617F myeloproliferative neoplasm treated by ruxolitinib.
    Luque Paz D; Ianotto JC; Chauveau A; Guibourg B; Lecucq L; Lippert E; Ugo V
    Ann Hematol; 2016 Jan; 95(2):349-50. PubMed ID: 26459144
    [No Abstract]   [Full Text] [Related]  

  • 4. Combination treatment for myeloproliferative neoplasms using JAK and pan-class I PI3K inhibitors.
    Choong ML; Pecquet C; Pendharkar V; Diaconu CC; Yong JW; Tai SJ; Wang SF; Defour JP; Sangthongpitag K; Villeval JL; Vainchenker W; Constantinescu SN; Lee MA
    J Cell Mol Med; 2013 Nov; 17(11):1397-409. PubMed ID: 24251790
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The promise of Janus kinase inhibitors in the treatment of hematological malignancies.
    Senkevitch E; Durum S
    Cytokine; 2017 Oct; 98():33-41. PubMed ID: 28277287
    [TBL] [Abstract][Full Text] [Related]  

  • 6. JAK inhibitors: pharmacology and clinical activity in chronic myeloprolipherative neoplasms.
    Treliński J; Robak T
    Curr Med Chem; 2013; 20(9):1147-61. PubMed ID: 23317159
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Underlying mechanisms of the JAK2V617F mutation in the pathogenesis of myeloproliferative neoplasms.
    Mullally A
    Pathologe; 2016 Nov; 37(Suppl 2):175-179. PubMed ID: 27796499
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Development and Use of Janus Kinase 2 Inhibitors for the Treatment of Myeloproliferative Neoplasms.
    Hobbs GS; Rozelle S; Mullally A
    Hematol Oncol Clin North Am; 2017 Aug; 31(4):613-626. PubMed ID: 28673391
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of JAK1/2 inhibitors in the treatment of chronic myeloproliferative neoplasms.
    Keohane C; Mesa R; Harrison C
    Am Soc Clin Oncol Educ Book; 2013; ():301-5. PubMed ID: 23714529
    [TBL] [Abstract][Full Text] [Related]  

  • 10. JAK1/2 and Pan-deacetylase inhibitor combination therapy yields improved efficacy in preclinical mouse models of JAK2V617F-driven disease.
    Evrot E; Ebel N; Romanet V; Roelli C; Andraos R; Qian Z; Dölemeyer A; Dammassa E; Sterker D; Cozens R; Hofmann F; Murakami M; Baffert F; Radimerski T
    Clin Cancer Res; 2013 Nov; 19(22):6230-41. PubMed ID: 24081976
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improved targeting of JAK2 leads to increased therapeutic efficacy in myeloproliferative neoplasms.
    Bhagwat N; Koppikar P; Keller M; Marubayashi S; Shank K; Rampal R; Qi J; Kleppe M; Patel HJ; Shah SK; Taldone T; Bradner JE; Chiosis G; Levine RL
    Blood; 2014 Mar; 123(13):2075-83. PubMed ID: 24470592
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pharmacobiological Approach for the Clinical Development of Ruxolitinib in Myeloproliferative Neoplasms.
    Eliaçık E; Işık A; Aksu S; Üner A; Büyükaşık Y; Sayınalp N; Göker H; Özcebe OI; Haznedaroğlu İC
    Turk J Haematol; 2015 Jun; 32(2):163-7. PubMed ID: 26316485
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The PIM inhibitor AZD1208 synergizes with ruxolitinib to induce apoptosis of ruxolitinib sensitive and resistant JAK2-V617F-driven cells and inhibit colony formation of primary MPN cells.
    Mazzacurati L; Lambert QT; Pradhan A; Griner LN; Huszar D; Reuther GW
    Oncotarget; 2015 Nov; 6(37):40141-57. PubMed ID: 26472029
    [TBL] [Abstract][Full Text] [Related]  

  • 14. New generation small-molecule inhibitors in myeloproliferative neoplasms.
    Passamonti F; Maffioli M; Caramazza D
    Curr Opin Hematol; 2012 Mar; 19(2):117-23. PubMed ID: 22227528
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ruxolitinib as potential targeted therapy for patients with JAK2 rearrangements.
    Chase A; Bryant C; Score J; Haferlach C; Grossmann V; Schwaab J; Hofmann WK; Reiter A; Cross NC
    Haematologica; 2013 Mar; 98(3):404-8. PubMed ID: 22875628
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ruxolitinib reduces JAK2 p.V617F allele burden in patients with polycythemia vera enrolled in the RESPONSE study.
    Vannucchi AM; Verstovsek S; Guglielmelli P; Griesshammer M; Burn TC; Naim A; Paranagama D; Marker M; Gadbaw B; Kiladjian JJ
    Ann Hematol; 2017 Jul; 96(7):1113-1120. PubMed ID: 28456851
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Autophagy inhibition potentiates ruxolitinib-induced apoptosis in JAK2
    Machado-Neto JA; Coelho-Silva JL; Santos FPS; Scheucher PS; Campregher PV; Hamerschlak N; Rego EM; Traina F
    Invest New Drugs; 2020 Jun; 38(3):733-745. PubMed ID: 31286322
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prospect of JAK2 inhibitor therapy in myeloproliferative neoplasms.
    Atallah E; Verstovsek S
    Expert Rev Anticancer Ther; 2009 May; 9(5):663-70. PubMed ID: 19445582
    [TBL] [Abstract][Full Text] [Related]  

  • 19. JAK2(V617F) allele burden ⩾50% is associated with response to ruxolitinib in persons with MPN-associated myelofibrosis and splenomegaly requiring therapy.
    Barosi G; Klersy C; Villani L; Bonetti E; Catarsi P; Poletto V; Campanelli R; Impera S; Latagliata R; Viarengo G; Carolei A; Massa M; Musso M; Crescimanno A; Gale RP; Rosti V
    Leukemia; 2016 Aug; 30(8):1772-5. PubMed ID: 26975727
    [No Abstract]   [Full Text] [Related]  

  • 20. Pharmacologic management of myelofibrosis.
    Leung M; Highsmith K; Rexwinkle A
    J Oncol Pharm Pract; 2017 Dec; 23(8):591-601. PubMed ID: 27672139
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.