These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

475 related articles for article (PubMed ID: 25017040)

  • 1. Microfluidic 3D models of cancer.
    Sung KE; Beebe DJ
    Adv Drug Deliv Rev; 2014 Dec; 79-80():68-78. PubMed ID: 25017040
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Addressing the tumour microenvironment in early drug discovery: a strategy to overcome drug resistance and identify novel targets for cancer therapy.
    Kaemmerer E; Loessner D; Avery VM
    Drug Discov Today; 2021 Mar; 26(3):663-676. PubMed ID: 33278601
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In-vitro tumor microenvironment models containing physical and biological barriers for modelling multidrug resistance mechanisms and multidrug delivery strategies.
    Rahmanian M; Seyfoori A; Ghasemi M; Shamsi M; Kolahchi AR; Modarres HP; Sanati-Nezhad A; Majidzadeh-A K
    J Control Release; 2021 Jun; 334():164-177. PubMed ID: 33895200
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 3D modeling in cancer studies.
    Atat OE; Farzaneh Z; Pourhamzeh M; Taki F; Abi-Habib R; Vosough M; El-Sibai M
    Hum Cell; 2022 Jan; 35(1):23-36. PubMed ID: 34761350
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chemoresistance of Cancer Cells: Requirements of Tumor Microenvironment-mimicking
    Jo Y; Choi N; Kim K; Koo HJ; Choi J; Kim HN
    Theranostics; 2018; 8(19):5259-5275. PubMed ID: 30555545
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cancer drug discovery: recent innovative approaches to tumor modeling.
    Lovitt CJ; Shelper TB; Avery VM
    Expert Opin Drug Discov; 2016 Sep; 11(9):885-94. PubMed ID: 27454169
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Drug discovery strategies in the field of tumor energy metabolism: Limitations by metabolic flexibility and metabolic resistance to chemotherapy.
    Amoedo ND; Obre E; Rossignol R
    Biochim Biophys Acta Bioenerg; 2017 Aug; 1858(8):674-685. PubMed ID: 28213330
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microfluidics Enabled Bottom-Up Engineering of 3D Vascularized Tumor for Drug Discovery.
    Agarwal P; Wang H; Sun M; Xu J; Zhao S; Liu Z; Gooch KJ; Zhao Y; Lu X; He X
    ACS Nano; 2017 Jul; 11(7):6691-6702. PubMed ID: 28614653
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Anticancer drug discovery using multicellular tumor spheroid models.
    Zanoni M; Pignatta S; Arienti C; Bonafè M; Tesei A
    Expert Opin Drug Discov; 2019 Mar; 14(3):289-301. PubMed ID: 30689452
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pathophysiologically relevant in vitro tumor models for drug screening.
    Das V; Bruzzese F; Konečný P; Iannelli F; Budillon A; Hajdúch M
    Drug Discov Today; 2015 Jul; 20(7):848-55. PubMed ID: 25908576
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microengineered 3D Tumor Models for Anti-Cancer Drug Discovery in Female-Related Cancers.
    Amirghasemi F; Adjei-Sowah E; Pockaj BA; Nikkhah M
    Ann Biomed Eng; 2021 Aug; 49(8):1943-1972. PubMed ID: 33403451
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reconstructing the tumor architecture into organoids.
    Luo Z; Zhou X; Mandal K; He N; Wennerberg W; Qu M; Jiang X; Sun W; Khademhosseini A
    Adv Drug Deliv Rev; 2021 Sep; 176():113839. PubMed ID: 34153370
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microfluidic culture models to study the hydrodynamics of tumor progression and therapeutic response.
    Buchanan C; Rylander MN
    Biotechnol Bioeng; 2013 Aug; 110(8):2063-72. PubMed ID: 23616255
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A microfluidic platform for drug screening in a 3D cancer microenvironment.
    Pandya HJ; Dhingra K; Prabhakar D; Chandrasekar V; Natarajan SK; Vasan AS; Kulkarni A; Shafiee H
    Biosens Bioelectron; 2017 Aug; 94():632-642. PubMed ID: 28371753
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cell-Based Assays on Microfluidics for Drug Screening.
    Liu X; Zheng W; Jiang X
    ACS Sens; 2019 Jun; 4(6):1465-1475. PubMed ID: 31074263
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Miniaturized pre-clinical cancer models as research and diagnostic tools.
    Håkanson M; Cukierman E; Charnley M
    Adv Drug Deliv Rev; 2014 Apr; 69-70():52-66. PubMed ID: 24295904
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vitro biomimetic models for glioblastoma-a promising tool for drug response studies.
    Stanković T; Ranđelović T; Dragoj M; Stojković Burić S; Fernández L; Ochoa I; Pérez-García VM; Pešić M
    Drug Resist Updat; 2021 Mar; 55():100753. PubMed ID: 33667959
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Generation of Heterogeneous Drug Gradients Across Cancer Populations on a Microfluidic Evolution Accelerator for Real-Time Observation.
    Lin KC; Torga G; Sun Y; Pienta KJ; Sturm JC; Austin RH
    J Vis Exp; 2019 Sep; (151):. PubMed ID: 31609331
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design of spherically structured 3D in vitro tumor models -Advances and prospects.
    Ferreira LP; Gaspar VM; Mano JF
    Acta Biomater; 2018 Jul; 75():11-34. PubMed ID: 29803007
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 3D Biomimetic Models to Reconstitute Tumor Microenvironment In Vitro: Spheroids, Organoids, and Tumor-on-a-Chip.
    Li W; Zhou Z; Zhou X; Khoo BL; Gunawan R; Chin YR; Zhang L; Yi C; Guan X; Yang M
    Adv Healthc Mater; 2023 Jul; 12(18):e2202609. PubMed ID: 36917657
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.