BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 25017140)

  • 1. DNA methylation in cardiac fibrosis: new advances and perspectives.
    Tao H; Yang JJ; Shi KH; Deng ZY; Li J
    Toxicology; 2014 Sep; 323():125-9. PubMed ID: 25017140
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of promoter hypermethylation in fibroblast activation and fibrogenesis.
    Zeisberg EM; Zeisberg M
    J Pathol; 2013 Jan; 229(2):264-73. PubMed ID: 23097091
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DNMT3A silencing RASSF1A promotes cardiac fibrosis through upregulation of ERK1/2.
    Tao H; Yang JJ; Chen ZW; Xu SS; Zhou X; Zhan HY; Shi KH
    Toxicology; 2014 Sep; 323():42-50. PubMed ID: 24945829
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Non-coding RNAs as direct and indirect modulators of epigenetic mechanism regulation of cardiac fibrosis.
    Tao H; Yang JJ; Shi KH
    Expert Opin Ther Targets; 2015 May; 19(5):707-16. PubMed ID: 25652534
    [TBL] [Abstract][Full Text] [Related]  

  • 5. HDAC6 Promotes Cardiac Fibrosis Progression through Suppressing RASSF1A Expression.
    Tao H; Yang JJ; Hu W; Shi KH; Li J
    Cardiology; 2016; 133(1):18-26. PubMed ID: 26401643
    [TBL] [Abstract][Full Text] [Related]  

  • 6. New advances of DNA methylation in liver fibrosis, with special emphasis on the crosstalk between microRNAs and DNA methylation machinery.
    Bian EB; Zhao B; Huang C; Wang H; Meng XM; Wu BM; Ma TT; Zhang L; Lv XW; Li J
    Cell Signal; 2013 Sep; 25(9):1837-44. PubMed ID: 23707524
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Epigenetic regulation of cardiac fibrosis.
    Tao H; Shi KH; Yang JJ; Huang C; Liu LP; Li J
    Cell Signal; 2013 Sep; 25(9):1932-8. PubMed ID: 23602934
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cardiac inflammation contributes to changes in the extracellular matrix in patients with heart failure and normal ejection fraction.
    Westermann D; Lindner D; Kasner M; Zietsch C; Savvatis K; Escher F; von Schlippenbach J; Skurk C; Steendijk P; Riad A; Poller W; Schultheiss HP; Tschöpe C
    Circ Heart Fail; 2011 Jan; 4(1):44-52. PubMed ID: 21075869
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of the extracellular matrix on the regulation of cardiac fibroblast behavior by mechanical stretch.
    Atance J; Yost MJ; Carver W
    J Cell Physiol; 2004 Sep; 200(3):377-86. PubMed ID: 15254965
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fibroblast Diversity and Epigenetic Regulation in Cardiac Fibrosis.
    Aguado-Alvaro LP; Garitano N; Pelacho B
    Int J Mol Sci; 2024 May; 25(11):. PubMed ID: 38892192
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The epigenetic feedback loop between DNA methylation and microRNAs in fibrotic disease with an emphasis on DNA methyltransferases.
    Sun X; He Y; Huang C; Ma TT; Li J
    Cell Signal; 2013 Sep; 25(9):1870-6. PubMed ID: 23707521
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Epigenetic modifications in fibrotic diseases: implications for pathogenesis and pharmacological targets.
    Yao HW; Li J
    J Pharmacol Exp Ther; 2015 Jan; 352(1):2-13. PubMed ID: 25362107
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Epigenetic signatures in cardiac fibrosis, special emphasis on DNA methylation and histone modification.
    Tao H; Song ZY; Ding XS; Yang JJ; Shi KH; Li J
    Heart Fail Rev; 2018 Sep; 23(5):789-799. PubMed ID: 29607455
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transient receptor potential (TRP) channels and cardiac fibrosis.
    Yue Z; Zhang Y; Xie J; Jiang J; Yue L
    Curr Top Med Chem; 2013; 13(3):270-82. PubMed ID: 23432060
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evidence of epigenetic tags in cardiac fibrosis.
    Grimaldi V; De Pascale MR; Zullo A; Soricelli A; Infante T; Mancini FP; Napoli C
    J Cardiol; 2017 Feb; 69(2):401-408. PubMed ID: 27863907
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Roles of Epigenetics in Cardiac Fibroblast Activation and Fibrosis.
    Shao J; Liu J; Zuo S
    Cells; 2022 Jul; 11(15):. PubMed ID: 35954191
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cardiac fibrosis: new insights into the pathogenesis.
    Ma ZG; Yuan YP; Wu HM; Zhang X; Tang QZ
    Int J Biol Sci; 2018; 14(12):1645-1657. PubMed ID: 30416379
    [TBL] [Abstract][Full Text] [Related]  

  • 18. PPAR-γ activation by rosiglitazone suppresses angiotensin II-mediated proliferation and phenotypictransition in cardiac fibroblasts via inhibition of activation of activator protein 1.
    Hou X; Zhang Y; Shen YH; Liu T; Song S; Cui L; Bu P
    Eur J Pharmacol; 2013 Sep; 715(1-3):196-203. PubMed ID: 23791613
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of cardiac fibroblasts in the transition from inflammation to fibrosis following myocardial infarction.
    van Nieuwenhoven FA; Turner NA
    Vascul Pharmacol; 2013 Mar; 58(3):182-8. PubMed ID: 22885638
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cardiac fibroblasts: from development to heart failure.
    Moore-Morris T; Guimarães-Camboa N; Yutzey KE; Pucéat M; Evans SM
    J Mol Med (Berl); 2015 Aug; 93(8):823-30. PubMed ID: 26169532
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.