These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
174 related articles for article (PubMed ID: 25017208)
21. Representation of the visual field in the primary visual area of the marmoset monkey: magnification factors, point-image size, and proportionality to retinal ganglion cell density. Chaplin TA; Yu HH; Rosa MG J Comp Neurol; 2013 Apr; 521(5):1001-19. PubMed ID: 22911425 [TBL] [Abstract][Full Text] [Related]
22. Neural mechanisms of spatial selective attention in areas V1, V2, and V4 of macaque visual cortex. Luck SJ; Chelazzi L; Hillyard SA; Desimone R J Neurophysiol; 1997 Jan; 77(1):24-42. PubMed ID: 9120566 [TBL] [Abstract][Full Text] [Related]
23. Uniformity and diversity of response properties of neurons in the primary visual cortex: selectivity for orientation, direction of motion, and stimulus size from center to far periphery. Yu HH; Rosa MG Vis Neurosci; 2014 Jan; 31(1):85-98. PubMed ID: 24160942 [TBL] [Abstract][Full Text] [Related]
24. Contribution of feedforward, lateral and feedback connections to the classical receptive field center and extra-classical receptive field surround of primate V1 neurons. Angelucci A; Bressloff PC Prog Brain Res; 2006; 154():93-120. PubMed ID: 17010705 [TBL] [Abstract][Full Text] [Related]
25. Focal attention produces spatially selective processing in visual cortical areas V1, V2, and V4 in the presence of competing stimuli. Motter BC J Neurophysiol; 1993 Sep; 70(3):909-19. PubMed ID: 8229178 [TBL] [Abstract][Full Text] [Related]
26. Efficient Receptive Field Tiling in Primate V1. Nauhaus I; Nielsen KJ; Callaway EM Neuron; 2016 Aug; 91(4):893-904. PubMed ID: 27499086 [TBL] [Abstract][Full Text] [Related]
27. Cue-invariant detection of centre-surround discontinuity by V1 neurons in awake macaque monkey. Shen ZM; Xu WF; Li CY J Physiol; 2007 Sep; 583(Pt 2):581-92. PubMed ID: 17599965 [TBL] [Abstract][Full Text] [Related]
28. Center-surround interactions in the middle temporal visual area of the owl monkey. Born RT J Neurophysiol; 2000 Nov; 84(5):2658-69. PubMed ID: 11068007 [TBL] [Abstract][Full Text] [Related]
30. Surface representation in the visual system. Komatsu H; Murakami I; Kinoshita M Brain Res Cogn Brain Res; 1996 Dec; 5(1-2):97-104. PubMed ID: 9049075 [TBL] [Abstract][Full Text] [Related]
31. Modulation of sensory suppression: implications for receptive field sizes in the human visual cortex. Kastner S; De Weerd P; Pinsk MA; Elizondo MI; Desimone R; Ungerleider LG J Neurophysiol; 2001 Sep; 86(3):1398-411. PubMed ID: 11535686 [TBL] [Abstract][Full Text] [Related]
32. Visual properties of neurons in area V4 of the macaque: sensitivity to stimulus form. Desimone R; Schein SJ J Neurophysiol; 1987 Mar; 57(3):835-68. PubMed ID: 3559704 [TBL] [Abstract][Full Text] [Related]
33. Neurons with large bilateral receptive fields in monkey prelunate gyrus. Pigarev IN; Nothdurft HC; Kastner S Exp Brain Res; 2001 Jan; 136(1):108-13. PubMed ID: 11204404 [TBL] [Abstract][Full Text] [Related]
34. Population encoding of spatial frequency, orientation, and color in macaque V1. Victor JD; Purpura K; Katz E; Mao B J Neurophysiol; 1994 Nov; 72(5):2151-66. PubMed ID: 7884450 [TBL] [Abstract][Full Text] [Related]
35. Flexible retinotopy: motion-dependent position coding in the visual cortex. Whitney D; Goltz HC; Thomas CG; Gati JS; Menon RS; Goodale MA Science; 2003 Oct; 302(5646):878-81. PubMed ID: 14500849 [TBL] [Abstract][Full Text] [Related]
36. A new psychophysical estimation of the receptive field size. Yazdanbakhsh A; Gori S Neurosci Lett; 2008 Jun; 438(2):246-51. PubMed ID: 18467028 [TBL] [Abstract][Full Text] [Related]
37. Sparse coding and decorrelation in primary visual cortex during natural vision. Vinje WE; Gallant JL Science; 2000 Feb; 287(5456):1273-6. PubMed ID: 10678835 [TBL] [Abstract][Full Text] [Related]
38. Suppressive Traveling Waves Shape Representations of Illusory Motion in Primary Visual Cortex of Awake Primate. Chemla S; Reynaud A; di Volo M; Zerlaut Y; Perrinet L; Destexhe A; Chavane F J Neurosci; 2019 May; 39(22):4282-4298. PubMed ID: 30886010 [TBL] [Abstract][Full Text] [Related]
39. An illusion predicted by V1 population activity implicates cortical topography in shape perception. Michel MM; Chen Y; Geisler WS; Seidemann E Nat Neurosci; 2013 Oct; 16(10):1477-83. PubMed ID: 24036915 [TBL] [Abstract][Full Text] [Related]
40. Subjective size perception depends on central visual cortical magnification in human v1. Schwarzkopf DS; Rees G PLoS One; 2013; 8(3):e60550. PubMed ID: 23536915 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]