These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 25017301)

  • 61. Method of testing very soft biological tissues in compression.
    Miller K
    J Biomech; 2005 Jan; 38(1):153-8. PubMed ID: 15519351
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Characterising soft tissues under large amplitude oscillatory shear and combined loading.
    Tan K; Cheng S; Jugé L; Bilston LE
    J Biomech; 2013 Apr; 46(6):1060-6. PubMed ID: 23481421
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Experimental study and modelling the evolution of viscoelastic hysteresis loop at different frequencies in myocardial tissue.
    Smoluk A; Smoluk L; Lisin R; Protsenko Y
    Acta Bioeng Biomech; 2017; 19(3):11-17. PubMed ID: 29205221
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Dynamic mechanical properties of oral mucosa: Comparison with polymeric soft denture liners.
    Lacoste-Ferré MH; Demont P; Dandurand J; Dantras E; Duran D; Lacabanne C
    J Mech Behav Biomed Mater; 2011 Apr; 4(3):269-74. PubMed ID: 21316614
    [TBL] [Abstract][Full Text] [Related]  

  • 65. The temperature-dependent viscoelasticity of porcine lumbar spine ligaments.
    Bass CR; Planchak CJ; Salzar RS; Lucas SR; Rafaels KA; Shender BS; Paskoff G
    Spine (Phila Pa 1976); 2007 Jul; 32(16):E436-42. PubMed ID: 17632382
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Effect of pre-stress on the dynamic tensile behavior of the TMJ disc.
    Lomakin J; Sprouse PA; Detamore MS; Gehrke SH
    J Biomech Eng; 2014 Jan; 136(1):011001. PubMed ID: 24141522
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Transient viscous response of the human cornea probed with the Surface Force Apparatus.
    Zappone B; Patil NJ; Lombardo M; Lombardo G
    PLoS One; 2018; 13(5):e0197779. PubMed ID: 29799859
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Rabbit cortical bone tissue increases its elastic stiffness but becomes less viscoelastic with age.
    Isaksson H; Malkiewicz M; Nowak R; Helminen HJ; Jurvelin JS
    Bone; 2010 Dec; 47(6):1030-8. PubMed ID: 20813215
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Characterization of cell mechanical properties by computational modeling of parallel plate compression.
    McGarry JP
    Ann Biomed Eng; 2009 Nov; 37(11):2317-25. PubMed ID: 19680813
    [TBL] [Abstract][Full Text] [Related]  

  • 70. In vivo mechanical characterization of human liver.
    Nava A; Mazza E; Furrer M; Villiger P; Reinhart WH
    Med Image Anal; 2008 Apr; 12(2):203-16. PubMed ID: 18171633
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Uncertainties in indentation testing of articular cartilage: a fibril-reinforced poroviscoelastic study.
    Julkunen P; Korhonen RK; Herzog W; Jurvelin JS
    Med Eng Phys; 2008 May; 30(4):506-15. PubMed ID: 17629536
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Dynamic indentation on human skin in vivo: ageing effects.
    Boyer G; Laquièze L; Le Bot A; Laquièze S; Zahouani H
    Skin Res Technol; 2009 Feb; 15(1):55-67. PubMed ID: 19152580
    [TBL] [Abstract][Full Text] [Related]  

  • 73. A phenomenological approach toward patient-specific computational modeling of articular cartilage including collagen fiber tracking.
    Pierce DM; Trobin W; Trattnig S; Bischof H; Holzapfel GA
    J Biomech Eng; 2009 Sep; 131(9):091006. PubMed ID: 19725695
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Dynamic compressive properties of articular cartilages in the porcine temporomandibular joint.
    Lamela MJ; Fernández P; Ramos A; Fernández-Canteli A; Tanaka E
    J Mech Behav Biomed Mater; 2013 Jul; 23():62-70. PubMed ID: 23660305
    [TBL] [Abstract][Full Text] [Related]  

  • 75. The nonlinear material properties of liver tissue determined from no-slip uniaxial compression experiments.
    Roan E; Vemaganti K
    J Biomech Eng; 2007 Jun; 129(3):450-6. PubMed ID: 17536913
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Standardized static and dynamic evaluation of myocardial tissue properties.
    Ramadan S; Paul N; Naguib HE
    Biomed Mater; 2017 Mar; 12(2):025013. PubMed ID: 28065929
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Simple empirical model for identifying rheological properties of soft biological tissues.
    Kobayashi Y; Tsukune M; Miyashita T; Fujie MG
    Phys Rev E; 2017 Feb; 95(2-1):022418. PubMed ID: 28297883
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Viscoelastic properties of shock wave exposed brain tissue subjected to unconfined compression experiments.
    McCarty AK; Zhang L; Hansen S; Jackson WJ; Bentil SA
    J Mech Behav Biomed Mater; 2019 Dec; 100():103380. PubMed ID: 31446342
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Elastic and viscoelastic mechanical properties of brain tissues on the implanting trajectory of sub-thalamic nucleus stimulation.
    Li Y; Deng J; Zhou J; Li X
    J Mater Sci Mater Med; 2016 Nov; 27(11):163. PubMed ID: 27646405
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Strain-rate frequency superposition in large-amplitude oscillatory shear.
    Kalelkar C; Lele A; Kamble S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Mar; 81(3 Pt 1):031401. PubMed ID: 20365730
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.