BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 25017510)

  • 1. Nucleotide substitution analyses of the glaucophyte Cyanophora suggest an ancestrally lower mutation rate in plastid vs mitochondrial DNA for the Archaeplastida.
    Smith DR; Jackson CJ; Reyes-Prieto A
    Mol Phylogenet Evol; 2014 Oct; 79():380-4. PubMed ID: 25017510
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular markers from different genomic compartments reveal cryptic diversity within glaucophyte species.
    Chong J; Jackson C; Kim JI; Yoon HS; Reyes-Prieto A
    Mol Phylogenet Evol; 2014 Jul; 76():181-8. PubMed ID: 24680917
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cyanobacterial contribution to algal nuclear genomes is primarily limited to plastid functions.
    Reyes-Prieto A; Hackett JD; Soares MB; Bonaldo MF; Bhattacharya D
    Curr Biol; 2006 Dec; 16(23):2320-5. PubMed ID: 17141613
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Massive difference in synonymous substitution rates among mitochondrial, plastid, and nuclear genes of Phaeocystis algae.
    Smith DR; Arrigo KR; Alderkamp AC; Allen AE
    Mol Phylogenet Evol; 2014 Feb; 71():36-40. PubMed ID: 24216019
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evolution of the glucose-6-phosphate isomerase: the plasticity of primary metabolism in photosynthetic eukaryotes.
    Grauvogel C; Brinkmann H; Petersen J
    Mol Biol Evol; 2007 Aug; 24(8):1611-21. PubMed ID: 17443012
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Relative rates of evolution among the three genetic compartments of the red alga Porphyra differ from those of green plants and do not correlate with genome architecture.
    Smith DR; Hua J; Lee RW; Keeling PJ
    Mol Phylogenet Evol; 2012 Oct; 65(1):339-44. PubMed ID: 22760027
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Similar relative mutation rates in the three genetic compartments of Mesostigma and Chlamydomonas.
    Hua J; Smith DR; Borza T; Lee RW
    Protist; 2012 Jan; 163(1):105-15. PubMed ID: 21621456
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High Sequence Divergence but Limited Architectural Rearrangements in Organelle Genomes of Cyanophora (Glaucophyta) Species.
    Russell S; Jackson C; Reyes-Prieto A
    J Eukaryot Microbiol; 2021 Jan; 68(1):e12831. PubMed ID: 33142007
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Twenty-fold difference in evolutionary rates between the mitochondrial and plastid genomes of species with secondary red plastids.
    Smith DR; Keeling PJ
    J Eukaryot Microbiol; 2012; 59(2):181-4. PubMed ID: 22236077
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The mitochondrial genomes of the glaucophytes Gloeochaete wittrockiana and Cyanoptyche gloeocystis: multilocus phylogenetics suggests a monophyletic archaeplastida.
    Jackson CJ; Reyes-Prieto A
    Genome Biol Evol; 2014 Oct; 6(10):2774-85. PubMed ID: 25281844
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phylogeny of nuclear-encoded plastid-targeted proteins supports an early divergence of glaucophytes within Plantae.
    Reyes-Prieto A; Bhattacharya D
    Mol Biol Evol; 2007 Nov; 24(11):2358-61. PubMed ID: 17827169
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of an improved Cyanophora paradoxa genome assembly.
    Price DC; Goodenough UW; Roth R; Lee JH; Kariyawasam T; Mutwil M; Ferrari C; Facchinelli F; Ball SG; Cenci U; Chan CX; Wagner NE; Yoon HS; Weber APM; Bhattacharya D
    DNA Res; 2019 Aug; 26(4):287-299. PubMed ID: 31098614
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mutation rates in plastid genomes: they are lower than you might think.
    Smith DR
    Genome Biol Evol; 2015 Apr; 7(5):1227-34. PubMed ID: 25869380
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The phylogenetic position of red algae revealed by multiple nuclear genes from mitochondria-containing eukaryotes and an alternative hypothesis on the origin of plastids.
    Nozaki H; Matsuzaki M; Takahara M; Misumi O; Kuroiwa H; Hasegawa M; Shin-i T; Kohara Y; Ogasawara N; Kuroiwa T
    J Mol Evol; 2003 Apr; 56(4):485-97. PubMed ID: 12664168
    [TBL] [Abstract][Full Text] [Related]  

  • 15. EEF2 analysis challenges the monophyly of Archaeplastida and Chromalveolata.
    Kim E; Graham LE
    PLoS One; 2008 Jul; 3(7):e2621. PubMed ID: 18612431
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Monophyly of primary photosynthetic eukaryotes: green plants, red algae, and glaucophytes.
    Rodríguez-Ezpeleta N; Brinkmann H; Burey SC; Roure B; Burger G; Löffelhardt W; Bohnert HJ; Philippe H; Lang BF
    Curr Biol; 2005 Jul; 15(14):1325-30. PubMed ID: 16051178
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Algal genomics: exploring the imprint of endosymbiosis.
    Archibald JM
    Curr Biol; 2006 Dec; 16(24):R1033-5. PubMed ID: 17174910
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plastid Genomes from Diverse Glaucophyte Genera Reveal a Largely Conserved Gene Content and Limited Architectural Diversity.
    Figueroa-Martinez F; Jackson C; Reyes-Prieto A
    Genome Biol Evol; 2019 Jan; 11(1):174-188. PubMed ID: 30534986
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mitochondrial and plastid genome architecture: Reoccurring themes, but significant differences at the extremes.
    Smith DR; Keeling PJ
    Proc Natl Acad Sci U S A; 2015 Aug; 112(33):10177-84. PubMed ID: 25814499
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phylogenetic analyses of nuclear, mitochondrial, and plastid multigene data sets support the placement of Mesostigma in the Streptophyta.
    Rodríguez-Ezpeleta N; Philippe H; Brinkmann H; Becker B; Melkonian M
    Mol Biol Evol; 2007 Mar; 24(3):723-31. PubMed ID: 17172635
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.