BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 25017626)

  • 1. Mechanism of foam destruction by antifoams: a molecular dynamics study.
    Gao F; Yan H; Wang Q; Yuan S
    Phys Chem Chem Phys; 2014 Aug; 16(32):17231-7. PubMed ID: 25017626
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Direct Observation of Foam Film Rupture by Several Types of Antifoams Using a Scanning Laser Microscope.
    Tamura T; Kageyama M; Kaneko Y; Kishino T; Nikaido M
    J Colloid Interface Sci; 1999 May; 213(1):179-186. PubMed ID: 10191020
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanisms of foam destruction by oil-based antifoams.
    Denkov ND
    Langmuir; 2004 Oct; 20(22):9463-505. PubMed ID: 15491178
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular simulations of droplet coalescence in oil/water/surfactant systems.
    Rekvig L; Frenkel D
    J Chem Phys; 2007 Oct; 127(13):134701. PubMed ID: 17919037
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Foams and antifoams.
    Karakashev SI; Grozdanova MV
    Adv Colloid Interface Sci; 2012; 176-177():1-17. PubMed ID: 22560722
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Surfactant micelles containing solubilized oil decrease foam film thickness stability.
    Lee J; Nikolov A; Wasan D
    J Colloid Interface Sci; 2014 Feb; 415():18-25. PubMed ID: 24267325
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular simulations of surface forces and film rupture in oil/water/surfactant systems.
    Rekvig L; Hafskjold B; Smit B
    Langmuir; 2004 Dec; 20(26):11583-93. PubMed ID: 15595787
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microscopic Mechanical Model Analysis and Visualization Investigation of SiO
    Gu Z; Li Z; Xu Z; Zhang C
    Langmuir; 2022 Aug; 38(30):9166-9185. PubMed ID: 35852171
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Study of the microcharacter of ultrastable aqueous foam stabilized by a kind of flexible connecting bipolar-headed surfactant with existence of magnesium ion.
    Li C; Li Y; Yuan R; Lv W
    Langmuir; 2013 May; 29(18):5418-27. PubMed ID: 23586737
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Investigation of Chemical-Foam Design as a Novel Approach toward Immiscible Foam Flooding for Enhanced Oil Recovery.
    Hosseini-Nasab SM; Zitha PLJ
    Energy Fuels; 2017 Oct; 31(10):10525-10534. PubMed ID: 29093612
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oil repartition in a foam film architecture.
    Piroird K; Lorenceau E; Biance AL
    Soft Matter; 2014 Sep; 10(36):7061-7. PubMed ID: 24975425
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanism of oil detachment from a silica surface in aqueous surfactant solutions: molecular dynamics simulations.
    Liu Q; Yuan S; Yan H; Zhao X
    J Phys Chem B; 2012 Mar; 116(9):2867-75. PubMed ID: 22335468
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular dynamics simulations of film rupture in water/surfactant systems.
    Yang W; Wu R; Kong B; Zhang X; Yang X
    J Phys Chem B; 2009 Jun; 113(24):8332-8. PubMed ID: 19476315
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigation of certain physical-chemical features of oil recovery by an optimized alkali-surfactant-foam (ASF) system.
    Hosseini-Nasab SM; Zitha PLJ
    Colloid Polym Sci; 2017; 295(10):1873-1886. PubMed ID: 28989223
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Foam-oil interaction in porous media: implications for foam assisted enhanced oil recovery.
    Farajzadeh R; Andrianov A; Krastev R; Hirasaki GJ; Rossen WR
    Adv Colloid Interface Sci; 2012 Nov; 183-184():1-13. PubMed ID: 22921844
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The orientation and charge of water at the hydrophobic oil droplet-water interface.
    VĂ¡cha R; Rick SW; Jungwirth P; de Beer AG; de Aguiar HB; Samson JS; Roke S
    J Am Chem Soc; 2011 Jul; 133(26):10204-10. PubMed ID: 21568343
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bubble bursting as an aerosol generation mechanism during an oil spill in the deep-sea environment: molecular dynamics simulations of oil alkanes and dispersants in atmospheric air/salt water interfaces.
    Liyana-Arachchi TP; Zhang Z; Ehrenhauser FS; Avij P; Valsaraj KT; Hung FR
    Environ Sci Process Impacts; 2014 Jan; 16(1):53-64. PubMed ID: 24296764
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel method to quantify the amount of surfactant at the oil/water interface and to determine total interfacial area of emulsions.
    James-Smith MA; Alford K; Shah DO
    J Colloid Interface Sci; 2007 Jun; 310(2):590-8. PubMed ID: 17321537
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure-behavior-property relationship study of surfactants as foam stabilizers explored by experimental and molecular simulation approaches.
    Hu X; Li Y; He X; Li C; Li Z; Cao X; Xin X; Somasundaran P
    J Phys Chem B; 2012 Jan; 116(1):160-7. PubMed ID: 22136447
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.