These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 25017665)

  • 1. Fast detection of nitroaromatics using phosphonate pyrene motifs as dual chemosensors.
    Venkatramaiah N; Firmino AD; Almeida Paz FA; Tomé JP
    Chem Commun (Camb); 2014 Sep; 50(68):9683-6. PubMed ID: 25017665
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phosphonate appended porphyrins as versatile chemosensors for selective detection of trinitrotoluene.
    Venkatramaiah N; Pereira CF; Mendes RF; Paz FA; Tomé JP
    Anal Chem; 2015 Apr; 87(8):4515-22. PubMed ID: 25810105
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Femtogram detection of explosive nitroaromatics: fluoranthene-based fluorescent chemosensors.
    Venkatramaiah N; Kumar S; Patil S
    Chemistry; 2012 Nov; 18(46):14745-51. PubMed ID: 23015532
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Detection of Nitroaromatics by Pyrene-Labeled Starch Nanoparticles.
    Patel S; Seet J; Li L; Duhamel J
    Langmuir; 2019 Oct; 35(40):13145-13156. PubMed ID: 31498989
    [TBL] [Abstract][Full Text] [Related]  

  • 5. π-Electron rich small molecule sensors for the recognition of nitroaromatics.
    Shanmugaraju S; Mukherjee PS
    Chem Commun (Camb); 2015 Nov; 51(89):16014-32. PubMed ID: 26463400
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pyrene-functionalized ruthenium nanoparticles as effective chemosensors for nitroaromatic derivatives.
    Chen W; Zuckerman NB; Konopelski JP; Chen S
    Anal Chem; 2010 Jan; 82(2):461-5. PubMed ID: 20000846
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fluorescent film sensors based on SAMs of pyrene derivatives for detecting nitroaromatics in aqueous solutions.
    Zhang S; Ding L; Lü F; Liu T; Fang Y
    Spectrochim Acta A Mol Biomol Spectrosc; 2012 Nov; 97():31-7. PubMed ID: 22750335
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Explosives sensing by using electron-rich supramolecular polymers: role of intermolecular hydrogen bonding in significant enhancement of sensitivity.
    Gole B; Song W; Lackinger M; Mukherjee PS
    Chemistry; 2014 Oct; 20(42):13662-80. PubMed ID: 25187022
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modification of extended open frameworks with fluorescent tags for sensing explosives: competition between size selectivity and electron deficiency.
    Gole B; Bar AK; Mukherjee PS
    Chemistry; 2014 Feb; 20(8):2276-91. PubMed ID: 24459002
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dipyrenylcalix[4]arene--a fluorescence-based chemosensor for trinitroaromatic explosives.
    Lee YH; Liu H; Lee JY; Kim SH; Kim SK; Sessler JL; Kim Y; Kim JS
    Chemistry; 2010 May; 16(20):5895-901. PubMed ID: 20432415
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reconsideration of the Detection and Fluorescence Mechanism of a Pyrene-Based Chemosensor for TNT.
    Lu M; Zhou P; Ma Y; Tang Z; Yang Y; Han K
    J Phys Chem A; 2018 Feb; 122(5):1400-1405. PubMed ID: 29337555
    [TBL] [Abstract][Full Text] [Related]  

  • 12. APTS and rGO co-functionalized pyrenated fluorescent nanonets for representative vapor phase nitroaromatic explosive detection.
    Guo L; Zu B; Yang Z; Cao H; Zheng X; Dou X
    Nanoscale; 2014; 6(3):1467-73. PubMed ID: 24316887
    [TBL] [Abstract][Full Text] [Related]  

  • 13. New insights into the sensing mechanism of a phosphonate pyrene chemosensor for TNT.
    Lu M; Zhou P; Li Z; Liu J; Yang Y; Han K
    Phys Chem Chem Phys; 2018 Jul; 20(29):19539-19545. PubMed ID: 29999071
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Highly fluorescent sensing of nitroaromatic explosives in aqueous media using pyrene-linked PBEMA microspheres.
    Turhan H; Tukenmez E; Karagoz B; Bicak N
    Talanta; 2018 Mar; 179():107-114. PubMed ID: 29310209
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electron-Rich π-Extended Diindolotriazatruxene-Based Chemosensors with Highly Selective and Rapid Responses to Nitroaromatic Explosives.
    Li X; Wang C; Song W; Meng C; Zuo C; Xue Y; Lai WY; Huang W
    Chempluschem; 2019 Oct; 84(10):1623-1629. PubMed ID: 31943936
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Self-assembled discrete molecules for sensing nitroaromatics.
    Shanmugaraju S; Mukherjee PS
    Chemistry; 2015 Apr; 21(18):6656-66. PubMed ID: 25694365
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Iptycene-based fluorescent sensors for nitroaromatics and TNT.
    Anzenbacher P; Mosca L; Palacios MA; Zyryanov GV; Koutnik P
    Chemistry; 2012 Oct; 18(40):12712-8. PubMed ID: 22930534
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inverted opal fluorescent film chemosensor for the detection of explosive nitroaromatic vapors through fluorescence resonance energy transfer.
    Fang Q; Geng J; Liu B; Gao D; Li F; Wang Z; Guan G; Zhang Z
    Chemistry; 2009 Nov; 15(43):11507-14. PubMed ID: 19810058
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Triphenylene derivatives: chemosensors for sensitive detection of nitroaromatic explosives.
    Bhalla V; Arora H; Singh H; Kumar M
    Dalton Trans; 2013 Jan; 42(4):969-74. PubMed ID: 23108226
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Diffusion-controlled detection of trinitrotoluene: interior nanoporous structure and low highest occupied molecular orbital level of building blocks enhance selectivity and sensitivity.
    Che Y; Gross DE; Huang H; Yang D; Yang X; Discekici E; Xue Z; Zhao H; Moore JS; Zang L
    J Am Chem Soc; 2012 Mar; 134(10):4978-82. PubMed ID: 22339204
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.