BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 25017887)

  • 1. Neuroinflammatory contributions to pain after SCI: roles for central glial mechanisms and nociceptor-mediated host defense.
    Walters ET
    Exp Neurol; 2014 Aug; 258():48-61. PubMed ID: 25017887
    [TBL] [Abstract][Full Text] [Related]  

  • 2. TRPV1 channels make major contributions to behavioral hypersensitivity and spontaneous activity in nociceptors after spinal cord injury.
    Wu Z; Yang Q; Crook RJ; O'Neil RG; Walters ET
    Pain; 2013 Oct; 154(10):2130-2141. PubMed ID: 23811042
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Truncated TrkB.T1-Mediated Astrocyte Dysfunction Contributes to Impaired Motor Function and Neuropathic Pain after Spinal Cord Injury.
    Matyas JJ; O'Driscoll CM; Yu L; Coll-Miro M; Daugherty S; Renn CL; Faden AI; Dorsey SG; Wu J
    J Neurosci; 2017 Apr; 37(14):3956-3971. PubMed ID: 28270575
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sodium channel expression and the molecular pathophysiology of pain after SCI.
    Hains BC; Waxman SG
    Prog Brain Res; 2007; 161():195-203. PubMed ID: 17618978
    [TBL] [Abstract][Full Text] [Related]  

  • 5. TrkB.T1 contributes to neuropathic pain after spinal cord injury through regulation of cell cycle pathways.
    Wu J; Renn CL; Faden AI; Dorsey SG
    J Neurosci; 2013 Jul; 33(30):12447-63. PubMed ID: 23884949
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Perspectives in Pain Research 2014: Neuroinflammation and glial cell activation: The cause of transition from acute to chronic pain?
    Cairns BE; Arendt-Nielsen L; Sacerdote P
    Scand J Pain; 2015 Jan; 6(1):3-6. PubMed ID: 29911589
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Persistent pain after spinal cord injury is maintained by primary afferent activity.
    Yang Q; Wu Z; Hadden JK; Odem MA; Zuo Y; Crook RJ; Frost JA; Walters ET
    J Neurosci; 2014 Aug; 34(32):10765-9. PubMed ID: 25100607
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chronic spontaneous activity generated in the somata of primary nociceptors is associated with pain-related behavior after spinal cord injury.
    Bedi SS; Yang Q; Crook RJ; Du J; Wu Z; Fishman HM; Grill RJ; Carlton SM; Walters ET
    J Neurosci; 2010 Nov; 30(44):14870-82. PubMed ID: 21048146
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spinal cord injury: a model of central neuropathic pain.
    Yezierski RP
    Neurosignals; 2005; 14(4):182-93. PubMed ID: 16215301
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Contribution of T-Type Calcium Channels to Spinal Cord Injury-Induced Hyperexcitability of Nociceptors.
    Lauzadis J; Liu H; Lu Y; Rebecchi MJ; Kaczocha M; Puopolo M
    J Neurosci; 2020 Sep; 40(38):7229-7240. PubMed ID: 32839232
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Macrophage Migration Inhibitory Factor (MIF) Makes Complex Contributions to Pain-Related Hyperactivity of Nociceptors after Spinal Cord Injury.
    Bavencoffe A; Spence EA; Zhu MY; Garza-Carbajal A; Chu KE; Bloom OE; Dessauer CW; Walters ET
    J Neurosci; 2022 Jul; 42(27):5463-5480. PubMed ID: 35610050
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intrathecal injection of carbenoxolone, a gap junction decoupler, attenuates the induction of below-level neuropathic pain after spinal cord injury in rats.
    Roh DH; Yoon SY; Seo HS; Kang SY; Han HJ; Beitz AJ; Lee JH
    Exp Neurol; 2010 Jul; 224(1):123-32. PubMed ID: 20226782
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Acute and chronic changes in dorsal horn innervation by primary afferents and descending supraspinal pathways after spinal cord injury.
    Kalous A; Osborne PB; Keast JR
    J Comp Neurol; 2007 Sep; 504(3):238-53. PubMed ID: 17640046
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Persistent Electrical Activity in Primary Nociceptors after Spinal Cord Injury Is Maintained by Scaffolded Adenylyl Cyclase and Protein Kinase A and Is Associated with Altered Adenylyl Cyclase Regulation.
    Bavencoffe A; Li Y; Wu Z; Yang Q; Herrera J; Kennedy EJ; Walters ET; Dessauer CW
    J Neurosci; 2016 Feb; 36(5):1660-8. PubMed ID: 26843647
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Early microglial inhibition preemptively mitigates chronic pain development after experimental spinal cord injury.
    Tan AM; Zhao P; Waxman SG; Hains BC
    J Rehabil Res Dev; 2009; 46(1):123-33. PubMed ID: 19533525
    [TBL] [Abstract][Full Text] [Related]  

  • 16. B1 and TRPV-1 receptor genes and their relationship to hyperalgesia following spinal cord injury.
    DomBourian MG; Turner NA; Gerovac TA; Vemuganti R; Miranpuri GS; Türeyen K; Satriotomo I; Miletic V; Resnick DK
    Spine (Phila Pa 1976); 2006 Nov; 31(24):2778-82. PubMed ID: 17108828
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Contribution of primary sensory neurons and spinal glial cells to pathomechanisms of neuropathic pain].
    Obata K; Noguchi K
    Brain Nerve; 2008 May; 60(5):483-92. PubMed ID: 18516970
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gliopathy ensures persistent inflammation and chronic pain after spinal cord injury.
    Hulsebosch CE
    Exp Neurol; 2008 Nov; 214(1):6-9. PubMed ID: 18708053
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fire and phantoms after spinal cord injury: Na+ channels and central pain.
    Waxman SG; Hains BC
    Trends Neurosci; 2006 Apr; 29(4):207-15. PubMed ID: 16494954
    [TBL] [Abstract][Full Text] [Related]  

  • 20. How is chronic pain related to sympathetic dysfunction and autonomic dysreflexia following spinal cord injury?
    Walters ET
    Auton Neurosci; 2018 Jan; 209():79-89. PubMed ID: 28161248
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.