BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

294 related articles for article (PubMed ID: 25017892)

  • 1. Is neuroinflammation in the injured spinal cord different than in the brain? Examining intrinsic differences between the brain and spinal cord.
    Zhang B; Gensel JC
    Exp Neurol; 2014 Aug; 258():112-20. PubMed ID: 25017892
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Potent pro-inflammatory actions of leukemia inhibitory factor in the spinal cord of the adult mouse.
    Kerr BJ; Patterson PH
    Exp Neurol; 2004 Aug; 188(2):391-407. PubMed ID: 15246839
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Immunological regulation of neuronal degeneration and regeneration in the injured spinal cord.
    Popovich PG
    Prog Brain Res; 2000; 128():43-58. PubMed ID: 11105668
    [No Abstract]   [Full Text] [Related]  

  • 4. The systemic response to CNS injury.
    Anthony DC; Couch Y
    Exp Neurol; 2014 Aug; 258():105-11. PubMed ID: 25017891
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Macrophage activation and its role in repair and pathology after spinal cord injury.
    Gensel JC; Zhang B
    Brain Res; 2015 Sep; 1619():1-11. PubMed ID: 25578260
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Activated macrophages and the blood-brain barrier: inflammation after CNS injury leads to increases in putative inhibitory molecules.
    Fitch MT; Silver J
    Exp Neurol; 1997 Dec; 148(2):587-603. PubMed ID: 9417835
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modulating inflammatory cell responses to spinal cord injury: all in good time.
    Bowes AL; Yip PK
    J Neurotrauma; 2014 Nov; 31(21):1753-66. PubMed ID: 24934600
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of inflammation in the brain and spinal cord following mechanical injury.
    Batchelor PE; Tan S; Wills TE; Porritt MJ; Howells DW
    J Neurotrauma; 2008 Oct; 25(10):1217-25. PubMed ID: 18986223
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Calpain activity and expression increased in activated glial and inflammatory cells in penumbra of spinal cord injury lesion.
    Shields DC; Schaecher KE; Hogan EL; Banik NL
    J Neurosci Res; 2000 Jul; 61(2):146-50. PubMed ID: 10878587
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The paradox of chronic neuroinflammation, systemic immune suppression, autoimmunity after traumatic chronic spinal cord injury.
    Schwab JM; Zhang Y; Kopp MA; Brommer B; Popovich PG
    Exp Neurol; 2014 Aug; 258():121-129. PubMed ID: 25017893
    [TBL] [Abstract][Full Text] [Related]  

  • 11. "Tissue-repairing" blood-derived macrophages are essential for healing of the injured spinal cord: from skin-activated macrophages to infiltrating blood-derived cells?
    Schwartz M
    Brain Behav Immun; 2010 Oct; 24(7):1054-7. PubMed ID: 20149864
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The cellular inflammatory response in human spinal cords after injury.
    Fleming JC; Norenberg MD; Ramsay DA; Dekaban GA; Marcillo AE; Saenz AD; Pasquale-Styles M; Dietrich WD; Weaver LC
    Brain; 2006 Dec; 129(Pt 12):3249-69. PubMed ID: 17071951
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Immune modulatory therapies for spinal cord injury--past, present and future.
    Plemel JR; Wee Yong V; Stirling DP
    Exp Neurol; 2014 Aug; 258():91-104. PubMed ID: 25017890
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inflammatory pathways in spinal cord injury.
    David S; Zarruk JG; Ghasemlou N
    Int Rev Neurobiol; 2012; 106():127-52. PubMed ID: 23211462
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Alpha4beta1 integrin blockade after spinal cord injury decreases damage and improves neurological function.
    Fleming JC; Bao F; Chen Y; Hamilton EF; Relton JK; Weaver LC
    Exp Neurol; 2008 Dec; 214(2):147-59. PubMed ID: 19038604
    [TBL] [Abstract][Full Text] [Related]  

  • 16. IKK-β-mediated myeloid cell activation exacerbates inflammation and inhibits recovery after spinal cord injury.
    Kang J; Jiang MH; Min HJ; Jo EK; Lee S; Karin M; Yune TY; Lee SJ
    Eur J Immunol; 2011 May; 41(5):1266-77. PubMed ID: 21469085
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative analysis of cellular inflammation after traumatic spinal cord injury: evidence for a multiphasic inflammatory response in the acute to chronic environment.
    Beck KD; Nguyen HX; Galvan MD; Salazar DL; Woodruff TM; Anderson AJ
    Brain; 2010 Feb; 133(Pt 2):433-47. PubMed ID: 20085927
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Brain-derived neurotrophic factor in astrocytes, oligodendrocytes, and microglia/macrophages after spinal cord injury.
    Dougherty KD; Dreyfus CF; Black IB
    Neurobiol Dis; 2000 Dec; 7(6 Pt B):574-85. PubMed ID: 11114257
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ly6C+ Ly6G- Myeloid-derived suppressor cells play a critical role in the resolution of acute inflammation and the subsequent tissue repair process after spinal cord injury.
    Saiwai H; Kumamaru H; Ohkawa Y; Kubota K; Kobayakawa K; Yamada H; Yokomizo T; Iwamoto Y; Okada S
    J Neurochem; 2013 Apr; 125(1):74-88. PubMed ID: 23278273
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bone Marrow-Derived Monocytes Drive the Inflammatory Microenvironment in Local and Remote Regions after Thoracic Spinal Cord Injury.
    Norden DM; Faw TD; McKim DB; Deibert RJ; Fisher LC; Sheridan JF; Godbout JP; Basso DM
    J Neurotrauma; 2019 Mar; 36(6):937-949. PubMed ID: 30014767
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.