These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 25017998)

  • 1. Ni(2+)-sensitive T-type Ca(2+) channel currents are regulated in parallel with synaptic and visual response plasticity in visual cortex.
    Horibe S; Tarusawa E; Komatsu Y; Yoshimura Y
    Neurosci Res; 2014 Oct; 87():33-9. PubMed ID: 25017998
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Involvement of T-type Ca2+ channels in the potentiation of synaptic and visual responses during the critical period in rat visual cortex.
    Yoshimura Y; Inaba M; Yamada K; Kurotani T; Begum T; Reza F; Maruyama T; Komatsu Y
    Eur J Neurosci; 2008 Aug; 28(4):730-43. PubMed ID: 18657180
    [TBL] [Abstract][Full Text] [Related]  

  • 3. TNFα is required for the production of T-type Ca(2+) channel-dependent long-term potentiation in visual cortex.
    Sugimura T; Yoshimura Y; Komatsu Y
    Neurosci Res; 2015 Jul; 96():37-44. PubMed ID: 25701075
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Visual experience regulates the development of long-term synaptic modifications induced by low-frequency stimulation in mouse visual cortex.
    Sugimura T; Yamamoto M; Yamada K; Komatsu Y; Yoshimura Y
    Neurosci Res; 2017 Jul; 120():36-44. PubMed ID: 28284708
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Facilitation of low-frequency stimulation-induced long-term potentiation by endogenous noradrenaline and serotonin in developing rat visual cortex.
    Inaba M; Maruyama T; Yoshimura Y; Hosoi H; Komatsu Y
    Neurosci Res; 2009 Jun; 64(2):191-8. PubMed ID: 19428700
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Requirement of keratan sulfate proteoglycan phosphacan with a specific sulfation pattern for critical period plasticity in the visual cortex.
    Takeda-Uchimura Y; Uchimura K; Sugimura T; Yanagawa Y; Kawasaki T; Komatsu Y; Kadomatsu K
    Exp Neurol; 2015 Dec; 274(Pt B):145-55. PubMed ID: 26277687
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rapid eye movement sleep deprivation in post-critical period, adolescent rats alters the balance between inhibitory and excitatory mechanisms in visual cortex.
    Shaffery JP; Lopez J; Bissette G; Roffwarg HP
    Neurosci Lett; 2006 Jan; 393(2-3):131-5. PubMed ID: 16236445
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reduced ocular dominance plasticity and long-term potentiation in the developing visual cortex of protein kinase A RII alpha mutant mice.
    Rao Y; Fischer QS; Yang Y; McKnight GS; LaRue A; Daw NW
    Eur J Neurosci; 2004 Aug; 20(3):837-42. PubMed ID: 15255994
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional masking of deprived eye responses by callosal input during ocular dominance plasticity.
    Restani L; Cerri C; Pietrasanta M; Gianfranceschi L; Maffei L; Caleo M
    Neuron; 2009 Dec; 64(5):707-18. PubMed ID: 20005826
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of monocular deprivation on the spatial pattern of visually induced expression of c-Fos protein.
    Nakadate K; Imamura K; Watanabe Y
    Neuroscience; 2012 Jan; 202():17-28. PubMed ID: 22178607
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dopamine D1/5 receptor-mediated long-term potentiation of intrinsic excitability in rat prefrontal cortical neurons: Ca2+-dependent intracellular signaling.
    Chen L; Bohanick JD; Nishihara M; Seamans JK; Yang CR
    J Neurophysiol; 2007 Mar; 97(3):2448-64. PubMed ID: 17229830
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Homeostatic regulation of eye-specific responses in visual cortex during ocular dominance plasticity.
    Mrsic-Flogel TD; Hofer SB; Ohki K; Reid RC; Bonhoeffer T; Hübener M
    Neuron; 2007 Jun; 54(6):961-72. PubMed ID: 17582335
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Vascular endothelial growth factor B prevents the shift in the ocular dominance distribution of visual cortical neurons in monocularly deprived rats.
    Shan L; Yong H; Song Q; Wei Y; Qin R; Zhang G; Xu M; Zhang S
    Exp Eye Res; 2013 Apr; 109():17-21. PubMed ID: 23370270
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Extended plasticity of visual cortex in dark-reared animals may result from prolonged expression of cpg15-like genes.
    Lee WC; Nedivi E
    J Neurosci; 2002 Mar; 22(5):1807-15. PubMed ID: 11880509
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Brief Novel Visual Experience Fundamentally Changes Synaptic Plasticity in the Mouse Visual Cortex.
    Li S; Wang L; Tie X; Sohya K; Lin X; Kirkwood A; Jiang B
    J Neurosci; 2017 Sep; 37(39):9353-9360. PubMed ID: 28821676
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Short-term (2 to 5 h) dark exposure lowers long-term potentiation (LTP) induction threshold in rat primary visual cortex.
    Kuo MC; Dringenberg HC
    Brain Res; 2009 Jun; 1276():58-66. PubMed ID: 19409376
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular mechanism for loss of visual cortical responsiveness following brief monocular deprivation.
    Heynen AJ; Yoon BJ; Liu CH; Chung HJ; Huganir RL; Bear MF
    Nat Neurosci; 2003 Aug; 6(8):854-62. PubMed ID: 12886226
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Co-regulation of long-term potentiation and experience-dependent synaptic plasticity in visual cortex by age and experience.
    Kirkwood A; Lee HK; Bear MF
    Nature; 1995 May; 375(6529):328-31. PubMed ID: 7753198
    [TBL] [Abstract][Full Text] [Related]  

  • 19. c-Fos activity mapping reveals differential effects of noradrenaline and serotonin depletion on the regulation of ocular dominance plasticity in rats.
    Nakadate K; Imamura K; Watanabe Y
    Neuroscience; 2013 Apr; 235():1-9. PubMed ID: 23333670
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Effects of binocular form deprivation on the properties of gamma-aminobutyric acid currents of rat visual cortical neurons].
    Qin W; Yin ZQ; Wang SJ; Zhao YJ
    Zhonghua Yan Ke Za Zhi; 2005 Jan; 41(1):37-40. PubMed ID: 15774112
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.