These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

358 related articles for article (PubMed ID: 25018088)

  • 1. Changes in glutathione-dependent redox status and mitochondrial energetic strategies are part of the adaptive response during the filamentation process in Candida albicans.
    Guedouari H; Gergondey R; Bourdais A; Vanparis O; Bulteau AL; Camadro JM; Auchère F
    Biochim Biophys Acta; 2014 Sep; 1842(9):1855-69. PubMed ID: 25018088
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Changes in glutathione-dependent redox status and mitochondrial energetic strategies are part of the adaptive response during the filamentation process in Candida albicans.
    Hala G; Rachel G; Arthur B; Océane V; Anne-Laure B; Jean-Michel C; Françoise A
    Free Radic Biol Med; 2014 Oct; 75 Suppl 1():S22. PubMed ID: 26461308
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The adaptive metabolic response involves specific protein glutathionylation during the filamentation process in the pathogen Candida albicans.
    Gergondey R; Garcia C; Serre V; Camadro JM; Auchère F
    Biochim Biophys Acta; 2016 Jul; 1862(7):1309-23. PubMed ID: 27083931
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The adaptive response to iron involves changes in energetic strategies in the pathogen Candida albicans.
    Duval C; Macabiou C; Garcia C; Lesuisse E; Camadro JM; Auchère F
    Microbiologyopen; 2020 Feb; 9(2):e970. PubMed ID: 31788966
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The adaptive response to alternative carbon sources in the pathogen Candida albicans involves a remodeling of thiol- and glutathione-dependent redox status.
    Bayot J; Martin C; Chevreux G; Camadro JM; Auchère F
    Biochem J; 2023 Feb; 480(3):197-217. PubMed ID: 36625375
    [TBL] [Abstract][Full Text] [Related]  

  • 6. SDH2 is involved in proper hypha formation and virulence in Candida albicans.
    Bi S; Lv QZ; Wang TT; Fuchs BB; Hu DD; Anastassopoulou CG; Desalermos A; Muhammed M; Wu CL; Jiang YY; Mylonakis E; Wang Y
    Future Microbiol; 2018 Aug; 13(10):1141-1156. PubMed ID: 30113213
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of TFP1 in vacuolar acidification, oxidative stress and filamentous development in Candida albicans.
    Jia C; Yu Q; Xu N; Zhang B; Dong Y; Ding X; Chen Y; Zhang B; Xing L; Li M
    Fungal Genet Biol; 2014 Oct; 71():58-67. PubMed ID: 25220074
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Involvement of Candida albicans pyruvate dehydrogenase complex protein X (Pdx1) in filamentation.
    Vellucci VF; Gygax SE; Hostetter MK
    Fungal Genet Biol; 2007 Oct; 44(10):979-90. PubMed ID: 17254815
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intravital Imaging of Candida albicans Identifies Differential
    Wakade RS; Huang M; Mitchell AP; Wellington M; Krysan DJ
    mSphere; 2021 Jun; 6(3):e0043621. PubMed ID: 34160243
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differential filamentation of Candida albicans and Candida dubliniensis Is governed by nutrient regulation of UME6 expression.
    O'Connor L; Caplice N; Coleman DC; Sullivan DJ; Moran GP
    Eukaryot Cell; 2010 Sep; 9(9):1383-97. PubMed ID: 20639413
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Antifungal curcumin induces reactive oxygen species and triggers an early apoptosis but prevents hyphae development by targeting the global repressor TUP1 in Candida albicans.
    Sharma M; Manoharlal R; Puri N; Prasad R
    Biosci Rep; 2010 Dec; 30(6):391-404. PubMed ID: 20017731
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Respiration supports intraphagosomal filamentation and escape of
    Case NT; Westman J; Hallett MT; Plumb J; Farheen A; Maxson ME; MacAlpine J; Liston SD; Hube B; Robbins N; Whitesell L; Grinstein S; Cowen LE
    mBio; 2023 Dec; 14(6):e0274523. PubMed ID: 38038475
    [No Abstract]   [Full Text] [Related]  

  • 13. Candida krusei and Candida glabrata reduce the filamentation of Candida albicans by downregulating expression of HWP1 gene.
    de Barros PP; Freire F; Rossoni RD; Junqueira JC; Jorge AOC
    Folia Microbiol (Praha); 2017 Jul; 62(4):317-323. PubMed ID: 28164244
    [TBL] [Abstract][Full Text] [Related]  

  • 14. ADH1 promotes Candida albicans pathogenicity by stimulating oxidative phosphorylation.
    Song Y; Li S; Zhao Y; Zhang Y; Lv Y; Jiang Y; Wang Y; Li D; Zhang H
    Int J Med Microbiol; 2019 Sep; 309(6):151330. PubMed ID: 31471070
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cell wall associated proteins involved in filamentation with impact on the virulence of Candida albicans.
    Arita GS; Faria DR; Capoci IRG; Kioshima ES; Bonfim-Mendonça PS; Svidzinski TIE
    Microbiol Res; 2022 May; 258():126996. PubMed ID: 35247799
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Systematic Metabolic Profiling Identifies
    Garbe E; Gerwien F; Driesch D; Müller T; Böttcher B; Gräler M; Vylkova S
    mSystems; 2022 Dec; 7(6):e0053922. PubMed ID: 36264075
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Roles of dihydrolipoamide dehydrogenase Lpd1 in Candida albicans filamentation.
    Kim SY; Kim J
    Fungal Genet Biol; 2010 Sep; 47(9):782-8. PubMed ID: 20601046
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transcriptional response of Candida albicans to hypoxia: linkage of oxygen sensing and Efg1p-regulatory networks.
    Setiadi ER; Doedt T; Cottier F; Noffz C; Ernst JF
    J Mol Biol; 2006 Aug; 361(3):399-411. PubMed ID: 16854431
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Accumulation of P-bodies in Candida albicans under different stress and filamentous growth conditions.
    Jung JH; Kim J
    Fungal Genet Biol; 2011 Dec; 48(12):1116-23. PubMed ID: 22056521
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Messenger RNA transport in the opportunistic fungal pathogen Candida albicans.
    McBride AE
    Curr Genet; 2017 Dec; 63(6):989-995. PubMed ID: 28512683
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.