These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 25018587)

  • 1. Ex Situ Integration of Multifunctional Porous Polymer Monoliths into Thermoplastic Microfluidic Chips.
    Kendall EL; Wienhold E; Rahmanian OD; DeVoe DL
    Sens Actuators B Chem; 2014 Oct; 202():866-872. PubMed ID: 25018587
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A chitosan coated monolith for nucleic acid capture in a thermoplastic microfluidic chip.
    Kendall EL; Wienhold E; DeVoe DL
    Biomicrofluidics; 2014 Jul; 8(4):044109. PubMed ID: 25379094
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Flow-through microfluidic immunosensors with refractive index-matched silica monoliths as volumetric optical detection elements.
    Wiederoder MS; Kendall EL; Han JH; Ulrich RG; DeVoe DL
    Sens Actuators B Chem; 2018 Jan; 254():878-886. PubMed ID: 29225421
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel surface modification technique for forming porous polymer monoliths in poly(dimethylsiloxane).
    Burke JM; Smela E
    Biomicrofluidics; 2012 Mar; 6(1):16506-1650610. PubMed ID: 22685511
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pen microfluidics: rapid desktop manufacturing of sealed thermoplastic microchannels.
    Rahmanian O; DeVoe DL
    Lab Chip; 2013 Mar; 13(6):1102-8. PubMed ID: 23344819
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Parameters Governing the Formation of Photopolymerized Silica Sol-Gel Monoliths in PDMS Microfluidic Chips.
    Levy MH; Goswami S; Plawsky J; Cramer SM
    Chromatographia; 2013 Aug; 76(15):993-1002. PubMed ID: 28450752
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fabrication of porous polymer monoliths covalently attached to the walls of channels in plastic microdevices.
    Stachowiak TB; Rohr T; Hilder EF; Peterson DS; Yi M; Svec F; Fréchet JM
    Electrophoresis; 2003 Nov; 24(21):3689-93. PubMed ID: 14613194
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Shape-anchored porous polymer monoliths for integrated online solid-phase extraction-microchip electrophoresis-electrospray ionization mass spectrometry.
    Nordman N; Barrios-Lopez B; Laurén S; Suvanto P; Kotiaho T; Franssila S; Kostiainen R; Sikanen T
    Electrophoresis; 2015 Feb; 36(3):428-32. PubMed ID: 25043750
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Confinement effects on the morphology of photopatterned porous polymer monoliths for capillary and microchip electrophoresis of proteins.
    He M; Zeng Y; Sun X; Harrison DJ
    Electrophoresis; 2008 Jul; 29(14):2980-6. PubMed ID: 18551717
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Isolation of intact bacteria from blood by selective cell lysis in a microfluidic porous silica monolith.
    Han JY; Wiederoder M; DeVoe DL
    Microsyst Nanoeng; 2019; 5():30. PubMed ID: 31240109
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Polymer Microchannel and Micromold Surface Polishing for Rapid, Low-Quantity Polydimethylsiloxane and Thermoplastic Microfluidic Device Fabrication.
    Tsao CW; Wu ZK
    Polymers (Basel); 2020 Nov; 12(11):. PubMed ID: 33147807
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fabrication of porous polymer monoliths in polymeric microfluidic chips as an electrospray emitter for direct coupling to mass spectrometry.
    Bedair MF; Oleschuk RD
    Anal Chem; 2006 Feb; 78(4):1130-8. PubMed ID: 16478104
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrochromatography in microchips: reversed-phase separation of peptides and amino acids using photopatterned rigid polymer monoliths.
    Throckmorton DJ; Shepodd TJ; Singh AK
    Anal Chem; 2002 Feb; 74(4):784-9. PubMed ID: 11866058
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sponge-nested polymer monolith sorptive extraction.
    Morales N; Thickett SC; Maya F
    J Chromatogr A; 2023 Jan; 1687():463668. PubMed ID: 36463645
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of an integrated microfluidic solid-phase extraction and electrophoresis device.
    Kumar S; Sahore V; Rogers CI; Woolley AT
    Analyst; 2016 Mar; 141(5):1660-8. PubMed ID: 26820409
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neutral, charged and stratified polar monoliths for hydrophilic interaction capillary electrochromatography.
    Gunasena DN; El Rassi Z
    J Chromatogr A; 2013 Nov; 1317():77-84. PubMed ID: 23972465
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optical detection enhancement in porous volumetric microfluidic capture elements using refractive index matching fluids.
    Wiederoder MS; Peterken L; Lu AX; Rahmanian OD; Raghavan SR; DeVoe DL
    Analyst; 2015 Aug; 140(16):5724-31. PubMed ID: 26160546
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Flow-through immunosensors using antibody-immobilized polymer monoliths.
    Liu J; Chen CF; Chang CW; DeVoe DL
    Biosens Bioelectron; 2010 Sep; 26(1):182-8. PubMed ID: 20598520
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On-chip solid phase extraction and enzyme digestion using cationic PolyE-323 coatings and porous polymer monoliths coupled to electrospray mass spectrometry.
    Hua Y; Jemere AB; Harrison DJ
    J Chromatogr A; 2011 Jul; 1218(26):4039-44. PubMed ID: 21616495
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Advances in the preparation of porous polymer monoliths in capillaries and microfluidic chips with focus on morphological aspects.
    Nischang I; Brueggemann O; Svec F
    Anal Bioanal Chem; 2010 Jun; 397(3):953-60. PubMed ID: 20213170
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.