BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

267 related articles for article (PubMed ID: 25018701)

  • 21. VAST (Volume Annotation and Segmentation Tool): Efficient Manual and Semi-Automatic Labeling of Large 3D Image Stacks.
    Berger DR; Seung HS; Lichtman JW
    Front Neural Circuits; 2018; 12():88. PubMed ID: 30386216
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Modified Golgi-Cox method for micrometer scale sectioning of the whole mouse brain.
    Zhang B; Li A; Yang Z; Wu J; Luo Q; Gong H
    J Neurosci Methods; 2011 Apr; 197(1):1-5. PubMed ID: 20959121
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A carbon nanotube tape for serial-section electron microscopy of brain ultrastructure.
    Kubota Y; Sohn J; Hatada S; Schurr M; Straehle J; Gour A; Neujahr R; Miki T; Mikula S; Kawaguchi Y
    Nat Commun; 2018 Jan; 9(1):437. PubMed ID: 29382816
    [TBL] [Abstract][Full Text] [Related]  

  • 24. An automated pipeline for mitochondrial segmentation on ATUM-SEM stacks.
    Li W; Deng H; Rao Q; Xie Q; Chen X; Han H
    J Bioinform Comput Biol; 2017 Jun; 15(3):1750015. PubMed ID: 28610459
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A Novel 3D Connection Algorithm of Mitochondria From ATUM-SEM Stacks Based on Segmentation Information in Context.
    Li W; Liu J; Xiao C; Deng H; Xie Q; Han H
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():5105-5108. PubMed ID: 30441489
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A Method for Obtaining Serial Ultrathin Sections of Microorganisms in Transmission Electron Microscopy.
    Yamaguchi M; Chibana H
    J Vis Exp; 2018 Jan; (131):. PubMed ID: 29364224
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Three-Dimensional Reconstruction of Erythrocytes Using the Novel Method For Corrective Realignment of the Transmission Electron Microscopy Cross-Section Images.
    Fan Y; Antonijević D; Zhong X; Komlev VS; Li Z; Đurić M; Fan Y
    Microsc Microanal; 2018 Dec; 24(6):676-683. PubMed ID: 30588909
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The cutting of ultrathin sections with the thickness less than 20 nm from biological specimens embedded in resin blocks.
    Nebesářová J; Hozák P; Frank L; Štěpan P; Vancová M
    Microsc Res Tech; 2016 Jun; 79(6):512-7. PubMed ID: 27030160
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A modular hierarchical approach to 3D electron microscopy image segmentation.
    Liu T; Jones C; Seyedhosseini M; Tasdizen T
    J Neurosci Methods; 2014 Apr; 226():88-102. PubMed ID: 24491638
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Correlated Light-Serial Scanning Electron Microscopy (CoLSSEM) for ultrastructural visualization of single neurons in vivo.
    Hirabayashi Y; Tapia JC; Polleux F
    Sci Rep; 2018 Sep; 8(1):14491. PubMed ID: 30262876
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Knife-edge scanning microscopy for imaging and reconstruction of three-dimensional anatomical structures of the mouse brain.
    Mayerich D; Abbott L; McCormick B
    J Microsc; 2008 Jul; 231(Pt 1):134-43. PubMed ID: 18638197
    [TBL] [Abstract][Full Text] [Related]  

  • 32. An easy, fast and "low-tech"-equipment-requiring alternative method to optimize immunolabelling conditions for pre-embedding immunogold electron microscopy and to correlate light and electron microscopical immunogold labelling results.
    Suiwal S; Kiefer G; Schmitz F; Schwarz K
    J Immunol Methods; 2017 May; 444():7-16. PubMed ID: 28209381
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Modern field emission scanning electron microscopy provides new perspectives for imaging kidney ultrastructure.
    Dittmayer C; Völcker E; Wacker I; Schröder RR; Bachmann S
    Kidney Int; 2018 Sep; 94(3):625-631. PubMed ID: 30143069
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Collection and handling of ultrathin serial sections for 3-dimensional reconstruction.
    Wali N; Jagadeesh JM
    J Neurosci Methods; 1989 Nov; 30(2):117-20. PubMed ID: 2586150
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A scalable and modular automated pipeline for stitching of large electron microscopy datasets.
    Mahalingam G; Torres R; Kapner D; Trautman ET; Fliss T; Seshamani S; Perlman E; Young R; Kinn S; Buchanan J; Takeno MM; Yin W; Bumbarger DJ; Gwinn RP; Nyhus J; Lein E; Smith SJ; Reid RC; Khairy KA; Saalfeld S; Collman F; Macarico da Costa N
    Elife; 2022 Jul; 11():. PubMed ID: 35880860
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Hierarchical imaging: a new concept for targeted imaging of large volumes from cells to tissues.
    Wacker I; Spomer W; Hofmann A; Thaler M; Hillmer S; Gengenbach U; Schröder RR
    BMC Cell Biol; 2016 Dec; 17(1):38. PubMed ID: 27955619
    [TBL] [Abstract][Full Text] [Related]  

  • 37. DeepEM3D: approaching human-level performance on 3D anisotropic EM image segmentation.
    Zeng T; Wu B; Ji S
    Bioinformatics; 2017 Aug; 33(16):2555-2562. PubMed ID: 28379412
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Population-scale three-dimensional reconstruction and quantitative profiling of microglia arbors.
    Megjhani M; Rey-Villamizar N; Merouane A; Lu Y; Mukherjee A; Trett K; Chong P; Harris C; Shain W; Roysam B
    Bioinformatics; 2015 Jul; 31(13):2190-8. PubMed ID: 25701570
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Three-dimensional imaging of trabecular bone using the computer numerically controlled milling technique.
    Beck JD; Canfield BL; Haddock SM; Chen TJ; Kothari M; Keaveny TM
    Bone; 1997 Sep; 21(3):281-7. PubMed ID: 9276094
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Surface imaging microscopy using an ultramiller for large volume 3D reconstruction of wax- and resin-embedded tissues.
    Gerneke DA; Sands GB; Ganesalingam R; Joshi P; Caldwell BJ; Smaill BH; Legrice IJ
    Microsc Res Tech; 2007 Oct; 70(10):886-94. PubMed ID: 17661361
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.