These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 25019586)

  • 41. Cryptochrome 1 mediates light-dependent inclination magnetosensing in monarch butterflies.
    Wan G; Hayden AN; Iiams SE; Merlin C
    Nat Commun; 2021 Feb; 12(1):771. PubMed ID: 33536422
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Cryptochrome Interacts With Actin and Enhances Eye-Mediated Light Sensitivity of the Circadian Clock in
    Schlichting M; Rieger D; Cusumano P; Grebler R; Costa R; Mazzotta GM; Helfrich-Förster C
    Front Mol Neurosci; 2018; 11():238. PubMed ID: 30072870
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Novel features of cryptochrome-mediated photoreception in the brain circadian clock of Drosophila.
    Klarsfeld A; Malpel S; Michard-Vanhée C; Picot M; Chélot E; Rouyer F
    J Neurosci; 2004 Feb; 24(6):1468-77. PubMed ID: 14960620
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Neural Network Interactions Modulate CRY-Dependent Photoresponses in
    Lamba P; Foley LE; Emery P
    J Neurosci; 2018 Jul; 38(27):6161-6171. PubMed ID: 29875268
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A Tug-of-War between Cryptochrome and the Visual System Allows the Adaptation of Evening Activity to Long Photoperiods in Drosophila melanogaster.
    Kistenpfennig C; Nakayama M; Nihara R; Tomioka K; Helfrich-Förster C; Yoshii T
    J Biol Rhythms; 2018 Feb; 33(1):24-34. PubMed ID: 29179610
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Roles of the two Drosophila CRYPTOCHROME structural domains in circadian photoreception.
    Busza A; Emery-Le M; Rosbash M; Emery P
    Science; 2004 Jun; 304(5676):1503-6. PubMed ID: 15178801
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Effects of an electric field on sleep quality and life span mediated by ultraviolet (UV)-A/blue light photoreceptor CRYPTOCHROME in Drosophila.
    Kawasaki H; Okano H; Nedachi T; Nakagawa-Yagi Y; Hara A; Ishida N
    Sci Rep; 2021 Oct; 11(1):20543. PubMed ID: 34654874
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Coupling Drosophila melanogaster Cryptochrome Light Activation and Oxidation of the Kvβ Subunit Hyperkinetic NADPH Cofactor.
    Hong G; Pachter R; Ritz T
    J Phys Chem B; 2018 Jun; 122(25):6503-6510. PubMed ID: 29847128
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Analysing the evolutional and functional differentiation of four types of Daphnia magna cryptochrome in Drosophila circadian clock.
    Nitta Y; Matsui S; Kato Y; Kaga Y; Sugimoto K; Sugie A
    Sci Rep; 2019 Jun; 9(1):8857. PubMed ID: 31222139
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Magnetoreception Regulates Male Courtship Activity in Drosophila.
    Wu CL; Fu TF; Chiang MH; Chang YW; Her JL; Wu T
    PLoS One; 2016; 11(5):e0155942. PubMed ID: 27195955
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Veela defines a molecular link between Cryptochrome and Timeless in the light-input pathway to Drosophila's circadian clock.
    Peschel N; Veleri S; Stanewsky R
    Proc Natl Acad Sci U S A; 2006 Nov; 103(46):17313-8. PubMed ID: 17068124
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Photoactivation of cryptochromes from Drosophila melanogaster and Sylvia borin: insight into the chemical compass mechanism by computational investigation.
    Hong G; Pachter R
    J Phys Chem B; 2015 Mar; 119(10):3883-92. PubMed ID: 25710635
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Animal type 1 cryptochromes. Analysis of the redox state of the flavin cofactor by site-directed mutagenesis.
    Öztürk N; Song SH; Selby CP; Sancar A
    J Biol Chem; 2008 Feb; 283(6):3256-3263. PubMed ID: 18056988
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A constant light-genetic screen identifies KISMET as a regulator of circadian photoresponses.
    Dubruille R; Murad A; Rosbash M; Emery P
    PLoS Genet; 2009 Dec; 5(12):e1000787. PubMed ID: 20041201
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Molecular analysis of zebrafish photolyase/cryptochrome family: two types of cryptochromes present in zebrafish.
    Kobayashi Y; Ishikawa T; Hirayama J; Daiyasu H; Kanai S; Toh H; Fukuda I; Tsujimura T; Terada N; Kamei Y; Yuba S; Iwai S; Todo T
    Genes Cells; 2000 Sep; 5(9):725-38. PubMed ID: 10971654
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Circadian and Geotactic Behaviors: Genetic Pleiotropy in
    Clayton DL
    J Circadian Rhythms; 2016 Jun; 14():5. PubMed ID: 30210553
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Comparative photochemistry of animal type 1 and type 4 cryptochromes.
    Ozturk N; Selby CP; Song SH; Ye R; Tan C; Kao YT; Zhong D; Sancar A
    Biochemistry; 2009 Sep; 48(36):8585-93. PubMed ID: 19663499
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Spectroscopic characterization of radicals and radical pairs in fruit fly cryptochrome - protonated and nonprotonated flavin radical-states.
    Paulus B; Bajzath C; Melin F; Heidinger L; Kromm V; Herkersdorf C; Benz U; Mann L; Stehle P; Hellwig P; Weber S; Schleicher E
    FEBS J; 2015 Aug; 282(16):3175-89. PubMed ID: 25879256
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Cryptochrome restores dampened circadian rhythms and promotes healthspan in aging Drosophila.
    Rakshit K; Giebultowicz JM
    Aging Cell; 2013 Oct; 12(5):752-62. PubMed ID: 23692507
    [TBL] [Abstract][Full Text] [Related]  

  • 60. CLOCK stabilizes CYCLE to initiate clock function in
    Liu T; Mahesh G; Yu W; Hardin PE
    Proc Natl Acad Sci U S A; 2017 Oct; 114(41):10972-10977. PubMed ID: 28973907
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.