These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

313 related articles for article (PubMed ID: 25019634)

  • 21. Kinetic Energy Harvesting for Wearable Medical Sensors.
    Gljušćić P; Zelenika S; Blažević D; Kamenar E
    Sensors (Basel); 2019 Nov; 19(22):. PubMed ID: 31726683
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Design and Experimental Investigation of a Rotational Piezoelectric Energy Harvester with an Offset Distance from the Rotation Center.
    Chen J; Liu X; Wang H; Wang S; Guan M
    Micromachines (Basel); 2022 Feb; 13(3):. PubMed ID: 35334679
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Stretchable piezoelectric nanocomposite generator.
    Park KI; Jeong CK; Kim NK; Lee KJ
    Nano Converg; 2016; 3(1):12. PubMed ID: 28191422
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Design and Development of a 2 × 2 Array Piezoelectric-Electromagnetic Hybrid Energy Harvester.
    Han B; Zhang S; Liu J; Jiang Y
    Micromachines (Basel); 2022 May; 13(5):. PubMed ID: 35630218
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Research and analysis of an energy harvester of piezoelectric cantilever beam based on nonlinear magnetic action.
    Gu X; He L; Yu G; Liu L; Zhou J; Cheng G
    Rev Sci Instrum; 2022 Jan; 93(1):015001. PubMed ID: 35104973
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The effects of first-order strain gradient in micro piezoelectric-bimorph power harvesters.
    Hu Y; Wang J; Yang F; Xue H; Hu H; Wang J
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Apr; 58(4):849-52. PubMed ID: 21507763
    [TBL] [Abstract][Full Text] [Related]  

  • 27. WearETE: A Scalable Wearable E-Textile Triboelectric Energy Harvesting System for Human Motion Scavenging.
    Li X; Sun Y
    Sensors (Basel); 2017 Nov; 17(11):. PubMed ID: 29149035
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Wearable Exoskeleton System for Energy Harvesting and Angle Sensing Based on a Piezoelectric Cantilever Generator Array.
    Hu B; Xue J; Jiang D; Tan P; Wang Y; Liu M; Yu H; Zou Y; Li Z
    ACS Appl Mater Interfaces; 2022 Aug; 14(32):36622-36632. PubMed ID: 35924818
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Design and Test of a Spoke-like Piezoelectric Energy Harvester.
    Gao S; Cao Q; Zhou N; Ao H; Jiang H
    Micromachines (Basel); 2022 Jan; 13(2):. PubMed ID: 35208356
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Piezoelectric and semiconducting coupled power generating process of a single ZnO belt/wire. A technology for harvesting electricity from the environment.
    Song J; Zhou J; Wang ZL
    Nano Lett; 2006 Aug; 6(8):1656-62. PubMed ID: 16895352
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mechanical Energy Sensing and Harvesting in Micromachined Polymer-Based Piezoelectric Transducers for Fully Implanted Hearing Systems: A Review.
    Latif R; Noor MM; Yunas J; Hamzah AA
    Polymers (Basel); 2021 Jul; 13(14):. PubMed ID: 34301034
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Self-Powered Wireless Sensor Using a Pressure Fluctuation Energy Harvester.
    Aranda JJ; Bader S; Oelmann B
    Sensors (Basel); 2021 Feb; 21(4):. PubMed ID: 33672194
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A Novel Bird-Shape Broadband Piezoelectric Energy Harvester for Low Frequency Vibrations.
    Yu H; Zhang X; Shan X; Hu L; Zhang X; Hou C; Xie T
    Micromachines (Basel); 2023 Feb; 14(2):. PubMed ID: 36838122
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Wireless power delivery for wearable sensors and implants in Body Sensor Networks.
    Zhang F; Hackwoth SA; Liu X; Li C; Sun M
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():692-5. PubMed ID: 21095665
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Design and Development of a Lead-Freepiezoelectric Energy Harvester for Wideband, Low Frequency, and Low Amplitude Vibrations.
    Kumari N; Rakotondrabe M
    Micromachines (Basel); 2021 Dec; 12(12):. PubMed ID: 34945386
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Analytical Modeling of a Doubly Clamped Flexible Piezoelectric Energy Harvester with Axial Excitation and Its Experimental Characterization.
    Mei J; Fan Q; Li L; Chen D; Xu L; Dai Q; Liu Q
    Sensors (Basel); 2021 Jun; 21(11):. PubMed ID: 34205008
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Enhancing the Performance of Textile Triboelectric Nanogenerators with Oblique Microrod Arrays for Wearable Energy Harvesting.
    Zhang L; Su C; Cheng L; Cui N; Gu L; Qin Y; Yang R; Zhou F
    ACS Appl Mater Interfaces; 2019 Jul; 11(30):26824-26829. PubMed ID: 31271026
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Piezoelectric Materials for Energy Harvesting and Sensing Applications: Roadmap for Future Smart Materials.
    Mahapatra SD; Mohapatra PC; Aria AI; Christie G; Mishra YK; Hofmann S; Thakur VK
    Adv Sci (Weinh); 2021 Sep; 8(17):e2100864. PubMed ID: 34254467
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A Self-Powered Engine Health Monitoring System Based on L-Shaped Wideband Piezoelectric Energy Harvester.
    Shi S; Yue Q; Zhang Z; Yuan J; Zhou J; Zhang X; Lu S; Luo X; Shi C; Yu H
    Micromachines (Basel); 2018 Nov; 9(12):. PubMed ID: 30487394
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A Versatile Model for Describing Energy Harvesting Characteristics of Composite-Laminated Piezoelectric Cantilever Patches.
    Xue X; Sun Q; Ma Q; Wang J
    Sensors (Basel); 2022 Jun; 22(12):. PubMed ID: 35746239
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.