BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 25019648)

  • 1. Ultrafast spectroscopic signature of charge transfer between single-walled carbon nanotubes and C60.
    Dowgiallo AM; Mistry KS; Johnson JC; Blackburn JL
    ACS Nano; 2014 Aug; 8(8):8573-81. PubMed ID: 25019648
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Probing Exciton Diffusion and Dissociation in Single-Walled Carbon Nanotube-C(60) Heterojunctions.
    Dowgiallo AM; Mistry KS; Johnson JC; Reid OG; Blackburn JL
    J Phys Chem Lett; 2016 May; 7(10):1794-9. PubMed ID: 27127916
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultrafast electron transfer in all-carbon-based SWCNT-C60 donor-acceptor nanoensembles connected by poly(phenylene-ethynylene) spacers.
    Barrejón M; Gobeze HB; Gómez-Escalonilla MJ; Fierro JL; Zhang M; Yudasaka M; Iijima S; D'Souza F; Langa F
    Nanoscale; 2016 Aug; 8(31):14716-24. PubMed ID: 27305145
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultrafast Photoinduced Electron Transfer and Charge Stabilization in Donor-Acceptor Dyads Capable of Harvesting Near-Infrared Light.
    Bandi V; Gobeze HB; D'Souza F
    Chemistry; 2015 Aug; 21(32):11483-94. PubMed ID: 26130432
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Charge transfer structure-reactivity dependence of fullerene-single-walled carbon nanotube heterojunctions.
    Hilmer AJ; Tvrdy K; Zhang J; Strano MS
    J Am Chem Soc; 2013 Aug; 135(32):11901-10. PubMed ID: 23848070
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tuning the driving force for exciton dissociation in single-walled carbon nanotube heterojunctions.
    Ihly R; Mistry KS; Ferguson AJ; Clikeman TT; Larson BW; Reid O; Boltalina OV; Strauss SH; Rumbles G; Blackburn JL
    Nat Chem; 2016 Jun; 8(6):603-9. PubMed ID: 27219706
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Charge Transfer from Photoexcited Semiconducting Single-Walled Carbon Nanotubes to Wide-Bandgap Wrapping Polymer.
    Kuang Z; Berger FJ; Lustres JLP; Wollscheid N; Li H; Lüttgens J; Leinen MB; Flavel BS; Zaumseil J; Buckup T
    J Phys Chem C Nanomater Interfaces; 2021 Apr; 125(15):8125-8136. PubMed ID: 34055124
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Charge Separation in P3HT:SWCNT Blends Studied by EPR: Spin Signature of the Photoinduced Charged State in SWCNT.
    Niklas J; Holt JM; Mistry K; Rumbles G; Blackburn JL; Poluektov OG
    J Phys Chem Lett; 2014 Feb; 5(3):601-6. PubMed ID: 26276616
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photosynthetic antenna-reaction center mimicry with a covalently linked monostyryl boron-dipyrromethene-aza-boron-dipyrromethene-C60 triad.
    Shi WJ; El-Khouly ME; Ohkubo K; Fukuzumi S; Ng DK
    Chemistry; 2013 Aug; 19(34):11332-41. PubMed ID: 23843303
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Linking optical spectra to free charges in donor/acceptor heterojunctions: cross-correlation of transient microwave and optical spectroscopy.
    Kang HS; Peurifoy S; Zhang B; Ferguson AJ; Reid OG; Nuckolls C; Blackburn JL
    Mater Horiz; 2021 May; 8(5):1509-1517. PubMed ID: 34846459
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Charge Transfer Dynamics between Carbon Nanotubes and Hybrid Organic Metal Halide Perovskite Films.
    Schulz P; Dowgiallo AM; Yang M; Zhu K; Blackburn JL; Berry JJ
    J Phys Chem Lett; 2016 Feb; 7(3):418-25. PubMed ID: 26757105
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thieno-pyrrole-fused 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene-fullerene dyads: utilization of near-infrared sensitizers for ultrafast charge separation in donor-acceptor systems.
    Bandi V; Das SK; Awuah SG; You Y; D'Souza F
    J Am Chem Soc; 2014 May; 136(21):7571-4. PubMed ID: 24820034
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Supramolecular carbon nanotube-fullerene donor-acceptor hybrids for photoinduced electron transfer.
    D'Souza F; Chitta R; Sandanayaka AS; Subbaiyan NK; D'Souza L; Araki Y; Ito O
    J Am Chem Soc; 2007 Dec; 129(51):15865-71. PubMed ID: 18052162
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Charge generation measured for fullerene-helical nanofilament liquid crystal heterojunctions.
    Callahan RA; Coffey DC; Chen D; Clark NA; Rumbles G; Walba DM
    ACS Appl Mater Interfaces; 2014 Apr; 6(7):4823-30. PubMed ID: 24588899
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Precision printing and optical modeling of ultrathin SWCNT/C60 heterojunction solar cells.
    Guillot SL; Mistry KS; Avery AD; Richard J; Dowgiallo AM; Ndione PF; van de Lagemaat J; Reese MO; Blackburn JL
    Nanoscale; 2015 Apr; 7(15):6556-66. PubMed ID: 25790468
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Amphiphilic Zinc Porphyrin Single-Walled Carbon Nanotube Hybrids: Efficient Formation and Excited State Charge Transfer Studies.
    Menon A; Münich PW; Wagner P; Officer DL; Guldi DM
    Small; 2021 Dec; 17(48):e2005648. PubMed ID: 33458948
    [TBL] [Abstract][Full Text] [Related]  

  • 17. What Controls the Rate of Ultrafast Charge Transfer and Charge Separation Efficiency in Organic Photovoltaic Blends.
    Jakowetz AC; Böhm ML; Zhang J; Sadhanala A; Huettner S; Bakulin AA; Rao A; Friend RH
    J Am Chem Soc; 2016 Sep; 138(36):11672-9. PubMed ID: 27538341
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reversible Charge Transfer with Single-Walled Carbon Nanotubes Upon Harvesting the Low Energy Part of the Solar Spectrum.
    Menon A; Slominskii YL; Joseph J; Dimitriev OP; Guldi DM
    Small; 2020 Feb; 16(8):e1906745. PubMed ID: 32003927
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bionano donor-acceptor hybrids of porphyrin, ssDNA, and semiconductive single-wall carbon nanotubes for electron transfer via porphyrin excitation.
    D'Souza F; Das SK; Zandler ME; Sandanayaka AS; Ito O
    J Am Chem Soc; 2011 Dec; 133(49):19922-30. PubMed ID: 22088093
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optically Generated Free-Carrier Collection from an All Single-Walled Carbon Nanotube Active Layer.
    Kubie L; Watkins KJ; Ihly R; Wladkowski HV; Blackburn JL; Rice WD; Parkinson BA
    J Phys Chem Lett; 2018 Sep; 9(17):4841-4847. PubMed ID: 30085684
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.