These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 25019740)

  • 1. Tagged-particle motion in a dense confined liquid.
    Lang S; Franosch T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jun; 89(6):062122. PubMed ID: 25019740
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamics of a self-diffusiophoretic particle in shear flow.
    Frankel AE; Khair AS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jul; 90(1):013030. PubMed ID: 25122392
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tagged particle motion in a dense liquid: feedback effects from the collective dynamics.
    Kaur C; Das SP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 May; 67(5 Pt 1):051505. PubMed ID: 12786156
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydrodynamic description of the long-time tails of the linear and rotational velocity autocorrelation functions of a particle in a confined geometry.
    Frydel D; Rice SA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Dec; 76(6 Pt 1):061404. PubMed ID: 18233847
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tagged-particle dynamics in confined colloidal liquids.
    Jung G; Schrack L; Franosch T
    Phys Rev E; 2020 Sep; 102(3-1):032611. PubMed ID: 33075887
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Zwanzig-Mori equation for the time-dependent pair distribution function.
    Chong SH; Son CY; Lee S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Apr; 83(4 Pt 1):041201. PubMed ID: 21599146
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mode-coupling theory of the glass transition for colloidal liquids in slit geometry.
    Schrack L; Franosch T
    Philos Mag (Abingdon); 2020; 100(8):1032-1057. PubMed ID: 32308566
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microscopic derivation of particle-based coarse-grained dynamics: Exact expression for memory function.
    Izvekov S
    J Chem Phys; 2017 Mar; 146(12):124109. PubMed ID: 28388110
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microscopic dynamics of thin hard rods.
    Otto M; Aspelmeier T; Zippelius A
    J Chem Phys; 2006 Apr; 124(15):154907. PubMed ID: 16674265
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mori-Zwanzig projection operator formalism for far-from-equilibrium systems with time-dependent Hamiltonians.
    Te Vrugt M; Wittkowski R
    Phys Rev E; 2019 Jun; 99(6-1):062118. PubMed ID: 31330634
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hybrid simulations of lateral diffusion in fluctuating membranes.
    Reister-Gottfried E; Leitenberger SM; Seifert U
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jan; 75(1 Pt 1):011908. PubMed ID: 17358185
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Coarse-grained single-particle dynamics in two-dimensional solids and liquids.
    Silbermann JR; Schoen M; Klapp SH
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jul; 78(1 Pt 1):011201. PubMed ID: 18763941
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mode-coupling theory for tagged-particle motion of active Brownian particles.
    Reichert J; Mandal S; Voigtmann T
    Phys Rev E; 2021 Oct; 104(4-1):044608. PubMed ID: 34781467
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mori-Zwanzig theory for dissipative forces in coarse-grained dynamics in the Markov limit.
    Izvekov S
    Phys Rev E; 2017 Jan; 95(1-1):013303. PubMed ID: 28208451
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mori-Zwanzig projection operator formalism: Particle-based coarse-grained dynamics of open classical systems far from equilibrium.
    Izvekov S
    Phys Rev E; 2021 Aug; 104(2-1):024121. PubMed ID: 34525637
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lattice Boltzmann simulations of contact line motion in a liquid-gas system.
    Briant AJ; Papatzacos P; Yeomans JM
    Philos Trans A Math Phys Eng Sci; 2002 Mar; 360(1792):485-95. PubMed ID: 16214689
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bulk-mediated diffusion on a planar surface: full solution.
    Chechkin AV; Zaid IM; Lomholt MA; Sokolov IM; Metzler R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Oct; 86(4 Pt 1):041101. PubMed ID: 23214523
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrostatically confined nanoparticle interactions and dynamics.
    Eichmann SL; Anekal SG; Bevan MA
    Langmuir; 2008 Feb; 24(3):714-21. PubMed ID: 18177058
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Collective motion of microspheres in suspensions observed by phase-mode dynamic ultrasound scattering technique.
    Nagao A; Norisuye T; Yawada T; Kohyama M; Tran-Cong-Miyata Q
    Ultrasonics; 2012 Jul; 52(5):628-35. PubMed ID: 22297094
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microrheology of colloidal systems.
    Puertas AM; Voigtmann T
    J Phys Condens Matter; 2014 Jun; 26(24):243101. PubMed ID: 24848328
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.