These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 25019777)

  • 1. Experimental signatures of a nonequilibrium phase transition governing the yielding of a soft glass.
    Hima Nagamanasa K; Gokhale S; Sood AK; Ganapathy R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jun; 89(6):062308. PubMed ID: 25019777
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamics of colloidal glasses and gels.
    Joshi YM
    Annu Rev Chem Biomol Eng; 2014; 5():181-202. PubMed ID: 24655137
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Suspensions of repulsive colloidal particles near the glass transition: Time and frequency domain descriptions.
    Roldán-Vargas S; de Vicente J; Barnadas-Rodríguez R; Quesada-Pérez M; Estelrich J; Callejas-Fernández J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Aug; 82(2 Pt 1):021406. PubMed ID: 20866808
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure and dynamics of soft repulsive colloidal suspensions in the vicinity of the glass transition.
    Crassous JJ; Casal-Dujat L; Medebach M; Obiols-Rabasa M; Vincent R; Reinhold F; Boyko V; Willerich I; Menzel A; Moitzi C; Reck B; Schurtenberger P
    Langmuir; 2013 Aug; 29(33):10346-59. PubMed ID: 23875751
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural evolution in the aging process of supercooled colloidal liquids.
    Kawasaki T; Tanaka H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jun; 89(6):062315. PubMed ID: 25019784
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The physics of the colloidal glass transition.
    Hunter GL; Weeks ER
    Rep Prog Phys; 2012 Jun; 75(6):066501. PubMed ID: 22790649
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Temperature dependent micro-rheology of a glass-forming polymer melt studied by molecular dynamics simulation.
    Kuhnhold A; Paul W
    J Chem Phys; 2014 Sep; 141(12):124907. PubMed ID: 25273474
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nonaffine measures of particle displacements in sheared colloidal glasses.
    Chikkadi V; Schall P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Mar; 85(3 Pt 1):031402. PubMed ID: 22587096
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Scaling of the glassy dynamics of soft repulsive particles: a mode-coupling approach.
    Berthier L; Flenner E; Jacquin H; Szamel G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Mar; 81(3 Pt 1):031505. PubMed ID: 20365738
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Physics in ordered and disordered colloidal matter composed of poly(N-isopropylacrylamide) microgel particles.
    Yunker PJ; Chen K; Gratale MD; Lohr MA; Still T; Yodh AG
    Rep Prog Phys; 2014 May; 77(5):056601. PubMed ID: 24801604
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Glass and Jamming Rheology in Soft Particles Made of PNIPAM and Polyacrylic Acid.
    Franco S; Buratti E; Nigro V; Zaccarelli E; Ruzicka B; Angelini R
    Int J Mol Sci; 2021 Apr; 22(8):. PubMed ID: 33919803
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Slow relaxations and stringlike jump motions in fragile glass-forming liquids: breakdown of the Stokes-Einstein relation.
    Kawasaki T; Onuki A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jan; 87(1):012312. PubMed ID: 23410336
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Visualizing the strain evolution during the indentation of colloidal glasses.
    Rahmani Y; Koopman R; Denisov D; Schall P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jan; 89(1):012304. PubMed ID: 24580224
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Asymptotic analysis of mode-coupling theory of active nonlinear microrheology.
    Gnann MV; Voigtmann T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jul; 86(1 Pt 1):011406. PubMed ID: 23005416
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Alignment of particles in sheared viscoelastic fluids.
    Santos de Oliveira IS; van den Noort A; Padding JT; den Otter WK; Briels WJ
    J Chem Phys; 2011 Sep; 135(10):104902. PubMed ID: 21932919
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fluctuation-dissipation theorem in an aging colloidal glass.
    Jabbari-Farouji S; Mizuno D; Atakhorrami M; MacKintosh FC; Schmidt CF; Eiser E; Wegdam GH; Bonn D
    Phys Rev Lett; 2007 Mar; 98(10):108302. PubMed ID: 17358575
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simple nonlinear equation for structural relaxation in glasses.
    Kolvin I; Bouchbinder E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jul; 86(1 Pt 1):010501. PubMed ID: 23005357
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Colloidal glass transition in unentangled polymer nanocomposite melts.
    Anderson BJ; Zukoski CF
    J Phys Condens Matter; 2009 Jul; 21(28):285102. PubMed ID: 21828508
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cracking in soft-hard latex blends: theory and experiments.
    Singh KB; Deoghare G; Tirumkudulu MS
    Langmuir; 2009 Jan; 25(2):751-60. PubMed ID: 19093759
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phase and rheological behavior of high-concentration colloidal hard-sphere and protein dispersions.
    Loveday SM; Creamer LK; Singh H; Rao MA
    J Food Sci; 2007 Sep; 72(7):R101-7. PubMed ID: 17995655
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.