These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
576 related articles for article (PubMed ID: 25019853)
1. Dynamical inference: where phase synchronization and generalized synchronization meet. Stankovski T; McClintock PV; Stefanovska A Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jun; 89(6):062909. PubMed ID: 25019853 [TBL] [Abstract][Full Text] [Related]
2. Dynamical Bayesian inference of time-evolving interactions: from a pair of coupled oscillators to networks of oscillators. Duggento A; Stankovski T; McClintock PV; Stefanovska A Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Dec; 86(6 Pt 1):061126. PubMed ID: 23367912 [TBL] [Abstract][Full Text] [Related]
3. Influence of chaotic synchronization on mixing in the phase space of interacting systems. Astakhov SV; Dvorak A; Anishchenko VS Chaos; 2013 Mar; 23(1):013103. PubMed ID: 23556940 [TBL] [Abstract][Full Text] [Related]
4. Detecting and characterizing phase synchronization in nonstationary dynamical systems. Lai YC; Frei MG; Osorio I Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Feb; 73(2 Pt 2):026214. PubMed ID: 16605436 [TBL] [Abstract][Full Text] [Related]
5. Inference of time-evolving coupled dynamical systems in the presence of noise. Stankovski T; Duggento A; McClintock PV; Stefanovska A Phys Rev Lett; 2012 Jul; 109(2):024101. PubMed ID: 23030162 [TBL] [Abstract][Full Text] [Related]
6. Effect of common noise on phase synchronization in coupled chaotic oscillators. Park K; Lai YC; Krishnamoorthy S; Kandangath A Chaos; 2007 Mar; 17(1):013105. PubMed ID: 17411241 [TBL] [Abstract][Full Text] [Related]
7. Spurious detection of phase synchronization in coupled nonlinear oscillators. Xu L; Chen Z; Hu K; Stanley HE; Ivanov PCh Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jun; 73(6 Pt 2):065201. PubMed ID: 16906897 [TBL] [Abstract][Full Text] [Related]
8. Transition from phase to generalized synchronization in time-delay systems. Senthilkumar DV; Lakshmanan M; Kurths J Chaos; 2008 Jun; 18(2):023118. PubMed ID: 18601485 [TBL] [Abstract][Full Text] [Related]
9. Emergent hybrid synchronization in coupled chaotic systems. Padmanaban E; Boccaletti S; Dana SK Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Feb; 91(2):022920. PubMed ID: 25768582 [TBL] [Abstract][Full Text] [Related]
10. Experimental synchronization of chaos in a large ring of mutually coupled single-transistor oscillators: phase, amplitude, and clustering effects. Minati L Chaos; 2014 Dec; 24(4):043108. PubMed ID: 25554028 [TBL] [Abstract][Full Text] [Related]
11. Noise enhanced phase synchronization and coherence resonance in sets of chaotic oscillators with weak global coupling. Kiss IZ; Zhai Y; Hudson JL; Zhou C; Kurths J Chaos; 2003 Mar; 13(1):267-78. PubMed ID: 12675433 [TBL] [Abstract][Full Text] [Related]
12. Detecting anomalous phase synchronization from time series. Tokuda IT; Kumar Dana S; Kurths J Chaos; 2008 Jun; 18(2):023134. PubMed ID: 18601500 [TBL] [Abstract][Full Text] [Related]
13. Entanglement tongue and quantum synchronization of disordered oscillators. Lee TE; Chan CK; Wang S Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Feb; 89(2):022913. PubMed ID: 25353551 [TBL] [Abstract][Full Text] [Related]
15. An approach to chaotic synchronization. Hramov AE; Koronovskii AA Chaos; 2004 Sep; 14(3):603-10. PubMed ID: 15446970 [TBL] [Abstract][Full Text] [Related]
16. Synchronization transition from chaos to limit cycle oscillations when a locally coupled chaotic oscillator grid is coupled globally to another chaotic oscillator. Godavarthi V; Kasthuri P; Mondal S; Sujith RI; Marwan N; Kurths J Chaos; 2020 Mar; 30(3):033121. PubMed ID: 32237762 [TBL] [Abstract][Full Text] [Related]
17. Chaotic synchronizations of spatially extended systems as nonequilibrium phase transitions. Cencini M; Tessone CJ; Torcini A Chaos; 2008 Sep; 18(3):037125. PubMed ID: 19045499 [TBL] [Abstract][Full Text] [Related]
18. Time delay induced different synchronization patterns in repulsively coupled chaotic oscillators. Yao C; Yi M; Shuai J Chaos; 2013 Sep; 23(3):033140. PubMed ID: 24089976 [TBL] [Abstract][Full Text] [Related]