These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 25020013)

  • 21. Neural network modeling and control of type 1 diabetes mellitus.
    El-Jabali AK
    Bioprocess Biosyst Eng; 2005 Apr; 27(2):75-9. PubMed ID: 15578231
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Blood glucose concentration control for type 1 diabetic patients: a multiple-model strategy.
    Batmani Y; Khodakaramzadeh S
    IET Syst Biol; 2020 Feb; 14(1):24-30. PubMed ID: 31931478
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Robust multi-objective blood glucose control in Type-1 diabetic patient.
    Mandal S; Sutradhar A
    IET Syst Biol; 2019 Jun; 13(3):136-146. PubMed ID: 31170693
    [TBL] [Abstract][Full Text] [Related]  

  • 24. In Silico Closed-Loop Control Validation Studies for Optimal Insulin Delivery in Type 1 Diabetes.
    Zavitsanou S; Mantalaris A; Georgiadis MC; Pistikopoulos EN
    IEEE Trans Biomed Eng; 2015 Oct; 62(10):2369-78. PubMed ID: 25935026
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Fuzzy-based controller for glucose regulation in type-1 diabetic patients by subcutaneous route.
    Campos-Delgado DU; Hernández-Ordoñez M; Femat R; Gordillo-Moscoso A
    IEEE Trans Biomed Eng; 2006 Nov; 53(11):2201-10. PubMed ID: 17073325
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Artificial pancreas: model predictive control design from clinical experience.
    Toffanin C; Messori M; Di Palma F; De Nicolao G; Cobelli C; Magni L
    J Diabetes Sci Technol; 2013 Nov; 7(6):1470-83. PubMed ID: 24351173
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Development of a fully automated closed loop artificial pancreas control system with dual pump delivery of insulin and glucagon.
    Jacobs PG; El Youssef J; Castle JR; Engle JM; Branigan DL; Johnson P; Massoud R; Kamath A; Ward WK
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():397-400. PubMed ID: 22254332
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A coordinated control strategy for insulin and glucagon delivery in type 1 diabetes.
    Herrero P; Bondia J; Oliver N; Georgiou P
    Comput Methods Biomech Biomed Engin; 2017 Oct; 20(13):1474-1482. PubMed ID: 28929796
    [TBL] [Abstract][Full Text] [Related]  

  • 29. An Improved PID Algorithm Based on Insulin-on-Board Estimate for Blood Glucose Control with Type 1 Diabetes.
    Hu R; Li C
    Comput Math Methods Med; 2015; 2015():281589. PubMed ID: 26550021
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Modeling Day-to-Day Variability of Glucose-Insulin Regulation Over 12-Week Home Use of Closed-Loop Insulin Delivery.
    Yue Ruan ; Wilinska ME; Thabit H; Hovorka R
    IEEE Trans Biomed Eng; 2017 Jun; 64(6):1412-1419. PubMed ID: 28113240
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Post-prandial plasma glucose prediction in type I diabetes based on Impulse Response Models.
    Stahl F; Johansson R; Renard E
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():1324-7. PubMed ID: 21095929
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Experimental glucose regulation with a high-order sliding-mode controller.
    Gallardo Hernández A; Revilla Monsalve C; Fridman L; Leder R; Islas Andrade S; Shtessel Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():2056-9. PubMed ID: 23366324
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A PI-fuzzy logic controller for the regulation of blood glucose level in diabetic patients.
    Ibbini M
    J Med Eng Technol; 2006; 30(2):83-92. PubMed ID: 16531347
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Hypoglycaemia-free artificial pancreas project.
    Magdelaine N; Rivadeneira PS; Chaillous L; Fournier-Guilloux AL; Krempf M; MohammadRidha T; Ait-Ahmed M; Moog CH
    IET Syst Biol; 2020 Feb; 14(1):16-23. PubMed ID: 31931477
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Control-Oriented Model With Intra-Patient Variations for an Artificial Pancreas.
    Moscoso-Vasquez M; Colmegna P; Rosales N; Garelli F; Sanchez-Pena R
    IEEE J Biomed Health Inform; 2020 Sep; 24(9):2681-2689. PubMed ID: 31995506
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Real-Time Model-Based Fault Detection of Continuous Glucose Sensor Measurements.
    Turksoy K; Roy A; Cinar A
    IEEE Trans Biomed Eng; 2017 Jul; 64(7):1437-1445. PubMed ID: 26930674
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Postprandial fuzzy adaptive strategy for a hybrid proportional derivative controller for the artificial pancreas.
    Beneyto A; Vehi J
    Med Biol Eng Comput; 2018 Nov; 56(11):1973-1986. PubMed ID: 29725915
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Toward a Run-to-Run Adaptive Artificial Pancreas: In Silico Results.
    Toffanin C; Visentin R; Messori M; Palma FD; Magni L; Cobelli C
    IEEE Trans Biomed Eng; 2018 Mar; 65(3):479-488. PubMed ID: 28092515
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Automatic glycemic regulation for the pediatric population based on switched control and time-varying IOB constraints: an in silico study.
    Fushimi E; Serafini MC; De Battista H; Garelli F
    Med Biol Eng Comput; 2020 Oct; 58(10):2325-2337. PubMed ID: 32710375
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Minimizing postprandial hypoglycemia in Type 1 diabetes patients using multiple insulin injections and capillary blood glucose self-monitoring with machine learning techniques.
    Oviedo S; Contreras I; Bertachi A; Quirós C; Giménez M; Conget I; Vehi J
    Comput Methods Programs Biomed; 2019 Sep; 178():175-180. PubMed ID: 31416546
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.