These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 25020034)

  • 1. Graphene quantum-dot-supported platinum nanoparticles: defect-mediated electrocatalytic activity in oxygen reduction.
    Song Y; Chen S
    ACS Appl Mater Interfaces; 2014 Aug; 6(16):14050-60. PubMed ID: 25020034
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrocatalytic activity of alkyne-functionalized AgAu alloy nanoparticles for oxygen reduction in alkaline media.
    Hu P; Song Y; Chen L; Chen S
    Nanoscale; 2015 Jun; 7(21):9627-36. PubMed ID: 25952150
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Graphene Quantum Dots Supported by Graphene Nanoribbons with Ultrahigh Electrocatalytic Performance for Oxygen Reduction.
    Jin H; Huang H; He Y; Feng X; Wang S; Dai L; Wang J
    J Am Chem Soc; 2015 Jun; 137(24):7588-91. PubMed ID: 26051597
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Membrane fuel cell cathode catalysts based on titanium oxide supported platinum nanoparticles.
    Gebauer C; Jusys Z; Wassner M; Hüsing N; Behm RJ
    Chemphyschem; 2014 Jul; 15(10):2094-107. PubMed ID: 24850442
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Defective TiO2-supported Cu nanoparticles as efficient and stable electrocatalysts for oxygen reduction in alkaline media.
    Liu K; Song Y; Chen S
    Nanoscale; 2015 Jan; 7(3):1224-32. PubMed ID: 25490038
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrochemical synthesis of core-shell catalysts for electrocatalytic applications.
    Kulp C; Chen X; Puschhof A; Schwamborn S; Somsen C; Schuhmann W; Bron M
    Chemphyschem; 2010 Sep; 11(13):2854-61. PubMed ID: 20408156
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Graphene quantum dots from a facile sono-Fenton reaction and its hybrid with a polythiophene graft copolymer toward photovoltaic application.
    Routh P; Das S; Shit A; Bairi P; Das P; Nandi AK
    ACS Appl Mater Interfaces; 2013 Dec; 5(23):12672-80. PubMed ID: 24245528
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis of supported platinum nanoparticles from Li-Pt solid solution.
    Xu T; Lin C; Wang C; Brewe DL; Ito Y; Lu J
    J Am Chem Soc; 2010 Feb; 132(7):2151-3. PubMed ID: 20121152
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Polyelectrolyte-functionalized graphene as metal-free electrocatalysts for oxygen reduction.
    Wang S; Yu D; Dai L; Chang DW; Baek JB
    ACS Nano; 2011 Aug; 5(8):6202-9. PubMed ID: 21780760
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reduced graphene oxide supported palladium nanoparticles via photoassisted citrate reduction for enhanced electrocatalytic activities.
    Huang YX; Xie JF; Zhang X; Xiong L; Yu HQ
    ACS Appl Mater Interfaces; 2014 Sep; 6(18):15795-801. PubMed ID: 25153308
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effective photocatalysis of functional nanocomposites based on carbon and TiO2 nanoparticles.
    Lin C; Song Y; Cao L; Chen S
    Nanoscale; 2013 Jun; 5(11):4986-92. PubMed ID: 23636102
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Self-assembly and chemical reactivity of alkenes on platinum nanoparticles.
    Hu P; Duchesne PN; Song Y; Zhang P; Chen S
    Langmuir; 2015 Jan; 31(1):522-8. PubMed ID: 25511500
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis and oxygen reduction electrocatalytic property of Pt-on-Pd bimetallic heteronanostructures.
    Peng Z; Yang H
    J Am Chem Soc; 2009 Jun; 131(22):7542-3. PubMed ID: 19438286
    [TBL] [Abstract][Full Text] [Related]  

  • 14. From well-defined Pt(II) surface species to the controlled growth of silica supported Pt nanoparticles.
    Laurent P; Veyre L; Thieuleux C; Donet S; Copéret C
    Dalton Trans; 2013 Jan; 42(1):238-48. PubMed ID: 23090287
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bimetallic Pt-Au nanocatalysts electrochemically deposited on graphene and their electrocatalytic characteristics towards oxygen reduction and methanol oxidation.
    Hu Y; Zhang H; Wu P; Zhang H; Zhou B; Cai C
    Phys Chem Chem Phys; 2011 Mar; 13(9):4083-94. PubMed ID: 21229152
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reduced graphene oxide (RGO)-supported NiCo₂O₄ nanoparticles: an electrocatalyst for methanol oxidation.
    Das AK; Layek RK; Kim NH; Jung D; Lee JH
    Nanoscale; 2014 Sep; 6(18):10657-65. PubMed ID: 25089926
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of reduction temperature on the preparation and characterization of Pt-Ru nanoparticles on multiwalled carbon nanotubes.
    Chetty R; Xia W; Kundu S; Bron M; Reinecke T; Schuhmann W; Muhler M
    Langmuir; 2009 Apr; 25(6):3853-60. PubMed ID: 19708258
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nitrogen self-doped porous carbon from surplus sludge as metal-free electrocatalysts for oxygen reduction reactions.
    Zhou K; Zhou W; Liu X; Wang Y; Wan J; Chen S
    ACS Appl Mater Interfaces; 2014 Sep; 6(17):14911-8. PubMed ID: 25137301
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Convenient immobilization of Pt-Sn bimetallic catalysts on nitrogen-doped carbon nanotubes for direct alcohol electrocatalytic oxidation.
    Wang X; Xue H; Yang L; Wang H; Zang P; Qin X; Wang Y; Ma Y; Wu Q; Hu Z
    Nanotechnology; 2011 Sep; 22(39):395401. PubMed ID: 21891845
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pt-Pd alloy nanoparticle-decorated carbon nanotubes: a durable and methanol tolerant oxygen reduction electrocatalyst.
    Ghosh S; Sahu RK; Raj CR
    Nanotechnology; 2012 Sep; 23(38):385602. PubMed ID: 22948751
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.