BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 25020126)

  • 1. WO3 nanoparticle-based conformable pH sensor.
    Santos L; Neto JP; Crespo A; Nunes D; Costa N; Fonseca IM; Barquinha P; Pereira L; Silva J; Martins R; Fortunato E
    ACS Appl Mater Interfaces; 2014 Aug; 6(15):12226-34. PubMed ID: 25020126
    [TBL] [Abstract][Full Text] [Related]  

  • 2. pH-controllable synthesis of unique nanostructured tungsten oxide aerogel and its sensitive glucose biosensor.
    Sun QQ; Xu M; Bao SJ; Li CM
    Nanotechnology; 2015 Mar; 26(11):115602. PubMed ID: 25706197
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Highly sensitive sensor for picomolar detection of insulin at physiological pH, using GC electrode modified with guanine and electrodeposited nickel oxide nanoparticles.
    Salimi A; Noorbakhash A; Sharifi E; Semnani A
    Biosens Bioelectron; 2008 Dec; 24(4):798-804. PubMed ID: 18692385
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis of polyethylene glycol (PEG) assisted tungsten oxide (WO3) nanoparticles for L-dopa bio-sensing applications.
    Hariharan V; Radhakrishnan S; Parthibavarman M; Dhilipkumar R; Sekar C
    Talanta; 2011 Sep; 85(4):2166-74. PubMed ID: 21872074
    [TBL] [Abstract][Full Text] [Related]  

  • 5. WO3 nanoparticles decorated core-shell TiC-C nanofiber arrays for high sensitive and non-enzymatic photoelectrochemical biosensing.
    Zhang X; Huo K; Peng X; Xu R; Li P; Chen R; Zheng G; Wu Z; Chu PK
    Chem Commun (Camb); 2013 Aug; 49(63):7091-3. PubMed ID: 23770651
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transparent, flexible, all-reduced graphene oxide thin film transistors.
    He Q; Wu S; Gao S; Cao X; Yin Z; Li H; Chen P; Zhang H
    ACS Nano; 2011 Jun; 5(6):5038-44. PubMed ID: 21524119
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improved photoelectrochemical properties of tungsten oxide by modification with plasmonic gold nanoparticles for the non-enzymatic sensing of ethanol.
    Li B; Chen Y; Peng A; Chen X; Chen X
    J Colloid Interface Sci; 2019 Mar; 537():528-535. PubMed ID: 30469120
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Immobilization of hemoglobin on electrodeposited cobalt-oxide nanoparticles: direct voltammetry and electrocatalytic activity.
    Salimi A; Hallaj R; Soltanian S
    Biophys Chem; 2007 Nov; 130(3):122-31. PubMed ID: 17825977
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tuning the field-emission properties of tungsten oxide nanorods.
    Liu J; Zhang Z; Zhao Y; Su X; Liu S; Wang E
    Small; 2005 Mar; 1(3):310-3. PubMed ID: 17193447
    [No Abstract]   [Full Text] [Related]  

  • 10. Fabrication of graphene-based flexible devices utilizing a soft lithographic patterning method.
    Jung MW; Myung S; Kim KW; Song W; Jo YY; Lee SS; Lim J; Park CY; An KS
    Nanotechnology; 2014 Jul; 25(28):285302. PubMed ID: 24971722
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A highly stable, efficient visible-light driven water photoelectrolysis system using a nanocrystalline WO3 photoanode and a methane sulfonic acid electrolyte.
    Solarska R; Jurczakowski R; Augustynski J
    Nanoscale; 2012 Mar; 4(5):1553-6. PubMed ID: 22290176
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ta2O5-Incorporated WO3 nanocomposite film for improved electrochromic performance in an acidic condition.
    Shim HS; Ahn HJ; Kim YS; Sung YE; Kim WB
    J Nanosci Nanotechnol; 2006 Nov; 6(11):3572-6. PubMed ID: 17252814
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photoelectrochemical water oxidation on photoanodes fabricated with hexagonal nanoflower and nanoblock WO3.
    Wang N; Wang D; Li M; Shi J; Li C
    Nanoscale; 2014 Feb; 6(4):2061-6. PubMed ID: 24384843
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metal and metal oxide nanoparticles in chemiresistors: does the nanoscale matter?
    Franke ME; Koplin TJ; Simon U
    Small; 2006 Jan; 2(1):36-50. PubMed ID: 17193551
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Amperometric sensor based on tricobalt tetroxide nanoparticles-graphene nanocomposite film modified glassy carbon electrode for determination of tyrosine.
    Jiang L; Gu S; Ding Y; Ye D; Zhang Z; Zhang F
    Colloids Surf B Biointerfaces; 2013 Jul; 107():146-51. PubMed ID: 23475062
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Controllable and reproducible construction of a SERS substrate and its sensing applications.
    Wen Y; Wang W; Zhang Z; Xu L; Du H; Zhang X; Song Y
    Nanoscale; 2013 Jan; 5(2):523-6. PubMed ID: 23223828
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photo-induced toxicity of tungsten oxide photochromic nanoparticles.
    Popov AL; Zholobak NM; Balko OI; Balko OB; Shcherbakov AB; Popova NR; Ivanova OS; Baranchikov AE; Ivanov VK
    J Photochem Photobiol B; 2018 Jan; 178():395-403. PubMed ID: 29195216
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Self-assembly of nanoparticle arrays for use as mirrors, sensors, and antennas.
    Edel JB; Kornyshev AA; Urbakh M
    ACS Nano; 2013 Nov; 7(11):9526-32. PubMed ID: 24237248
    [TBL] [Abstract][Full Text] [Related]  

  • 19. WO3 nanostructures facilitate electron transfer of enzyme: application to detection of H2O2 with high selectivity.
    Deng Z; Gong Y; Luo Y; Tian Y
    Biosens Bioelectron; 2009 Apr; 24(8):2465-9. PubMed ID: 19208464
    [TBL] [Abstract][Full Text] [Related]  

  • 20. para-Sulfonatocalix[6]arene-modified silver nanoparticles electrodeposited on glassy carbon electrode: preparation and electrochemical sensing of methyl parathion.
    Bian Y; Li C; Li H
    Talanta; 2010 May; 81(3):1028-33. PubMed ID: 20298889
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.