BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 25020135)

  • 1. Tailoring surface hydrophilicity of porous electrospun nanofibers to enhance capillary and push-pull effects for moisture wicking.
    Dong Y; Kong J; Phua SL; Zhao C; Thomas NL; Lu X
    ACS Appl Mater Interfaces; 2014 Aug; 6(16):14087-95. PubMed ID: 25020135
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Highly efficient wettability control via three-dimensional (3D) suspension of titania nanoparticles in polystyrene nanofibers.
    Lee MW; An S; Joshi B; Latthe SS; Yoon SS
    ACS Appl Mater Interfaces; 2013 Feb; 5(4):1232-9. PubMed ID: 23347600
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanical and wettable behavior of polyacrylonitrile reinforced fibrous polystyrene mats.
    Sun M; Li X; Ding B; Yu J; Sun G
    J Colloid Interface Sci; 2010 Jul; 347(1):147-52. PubMed ID: 20362298
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fabrication, surface properties and protein encapsulation/release studies of electrospun gelatin nanofibers.
    Liu S; Su Y; Chen Y
    J Biomater Sci Polym Ed; 2011; 22(7):945-55. PubMed ID: 20566066
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrospun Ultrafine Fiber Composites Containing Fumed Silica: From Solution Rheology to Materials with Tunable Wetting.
    Dufficy MK; Geiger MT; Bonino CA; Khan SA
    Langmuir; 2015 Nov; 31(45):12455-63. PubMed ID: 26477547
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Low-temperature plasma treatment-assisted layer-by-layer self-assembly for the modification of nanofibrous mats.
    Liu R; Dai J; Ma L; Chen J; Shi X; Du Y; Li Z; Deng H
    J Colloid Interface Sci; 2019 Mar; 540():535-543. PubMed ID: 30677606
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Capillary effect in Janus electrospun nanofiber membrane for oil/water emulsion separation.
    Liang Y; Kim S; Kallem P; Choi H
    Chemosphere; 2019 Apr; 221():479-485. PubMed ID: 30654262
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multiscale carbon structures fabricated by direct micropatterning of electrospun mats of SU-8 photoresist nanofibers.
    Sharma CS; Sharma A; Madou M
    Langmuir; 2010 Feb; 26(4):2218-22. PubMed ID: 20070083
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multi-scaled interconnected inter- and intra-fiber porous janus membranes for enhanced directional moisture transport.
    Yan W; Miao D; Babar AA; Zhao J; Jia Y; Ding B; Wang X
    J Colloid Interface Sci; 2020 Apr; 565():426-435. PubMed ID: 31982709
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dual-biomimetic superhydrophobic electrospun polystyrene nanofibrous membranes for membrane distillation.
    Li X; Wang C; Yang Y; Wang X; Zhu M; Hsiao BS
    ACS Appl Mater Interfaces; 2014 Feb; 6(4):2423-30. PubMed ID: 24467347
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Breathable and Colorful Cellulose Acetate-Based Nanofibrous Membranes for Directional Moisture Transport.
    Babar AA; Miao D; Ali N; Zhao J; Wang X; Yu J; Ding B
    ACS Appl Mater Interfaces; 2018 Jul; 10(26):22866-22875. PubMed ID: 29870228
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrospun Polyacrylonitrile-Ionic Liquid Nanofibers for Superior PM2.5 Capture Capacity.
    Jing L; Shim K; Toe CY; Fang T; Zhao C; Amal R; Sun KN; Kim JH; Ng YH
    ACS Appl Mater Interfaces; 2016 Mar; 8(11):7030-6. PubMed ID: 26918821
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tuning the gradient structure of highly breathable, permeable, directional water transport in bi-layered Janus fibrous membranes using electrospinning.
    Zhang Y; Li TT; Ren HT; Sun F; Lin Q; Lin JH; Lou CW
    RSC Adv; 2020 Jan; 10(6):3529-3538. PubMed ID: 35497713
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improvement of the hydrophilicity of electrospun porous carbon nanofibers by grafting phenylsulfonic acid groups.
    Bai Y; Huang ZH; Zhang ZX; Kang F
    J Colloid Interface Sci; 2013 Mar; 394():177-82. PubMed ID: 23261348
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrospun polyethylene oxide/cellulose nanocrystal composite nanofibrous mats with homogeneous and heterogeneous microstructures.
    Zhou C; Chu R; Wu R; Wu Q
    Biomacromolecules; 2011 Jul; 12(7):2617-25. PubMed ID: 21574638
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An in situ polymerization approach for the synthesis of superhydrophobic and superoleophilic nanofibrous membranes for oil-water separation.
    Shang Y; Si Y; Raza A; Yang L; Mao X; Ding B; Yu J
    Nanoscale; 2012 Dec; 4(24):7847-54. PubMed ID: 23149675
    [TBL] [Abstract][Full Text] [Related]  

  • 18. To study surface and sub-surface nanomechanical properties of electrospun polyacrylonitrile (PAN) nanofibers/polydimethylsiloxane (PDMS) composites.
    Deshpande TD; Singh YRG; Patil S; Joshi YM; Sharma A
    Soft Matter; 2018 Oct; 14(38):7829-7838. PubMed ID: 30191946
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of polymer molecular weight on the fiber morphology of electrospun mats.
    Pant HR; Nam KT; Oh HJ; Panthi G; Kim HD; Kim BI; Kim HY
    J Colloid Interface Sci; 2011 Dec; 364(1):107-11. PubMed ID: 21889156
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Polydopamine meets solid-state nanopores: a bioinspired integrative surface chemistry approach to tailor the functional properties of nanofluidic diodes.
    PĂ©rez-Mitta G; Tuninetti JS; Knoll W; Trautmann C; Toimil-Molares ME; Azzaroni O
    J Am Chem Soc; 2015 May; 137(18):6011-7. PubMed ID: 25879882
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.