BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 25020142)

  • 21. Algal neurotoxin biosynthesis repurposes the terpene cyclase structural fold into an
    Chekan JR; McKinnie SMK; Noel JP; Moore BS
    Proc Natl Acad Sci U S A; 2020 Jun; 117(23):12799-12805. PubMed ID: 32457155
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Molecular and structural basis of metabolic diversity mediated by prenyldiphosphate converting enzymes.
    Brandt W; Bräuer L; Günnewich N; Kufka J; Rausch F; Schulze D; Schulze E; Weber R; Zakharova S; Wessjohann L
    Phytochemistry; 2009; 70(15-16):1758-75. PubMed ID: 19878958
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Biotransformation of menadione to its prenylated derivative MK-3 using recombinant Pichia pastoris.
    Li Z; Zhao G; Liu H; Guo Y; Wu H; Sun X; Wu X; Zheng Z
    J Ind Microbiol Biotechnol; 2017 Jul; 44(7):973-985. PubMed ID: 28258406
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Prenylation of aromatic compounds, a key diversification of plant secondary metabolites.
    Yazaki K; Sasaki K; Tsurumaru Y
    Phytochemistry; 2009; 70(15-16):1739-45. PubMed ID: 19819506
    [TBL] [Abstract][Full Text] [Related]  

  • 25. CloR, a bifunctional non-heme iron oxygenase involved in clorobiocin biosynthesis.
    Pojer F; Kahlich R; Kammerer B; Li SM; Heide L
    J Biol Chem; 2003 Aug; 278(33):30661-8. PubMed ID: 12777382
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Quantum mechanical/molecular mechanical molecular dynamics simulation of wild-type and seven mutants of CpNagJ in complex with PUGNAc.
    Lameira J; Alves CN; Moliner V; Martí S; Castillo R; Tuñón I
    J Phys Chem B; 2010 May; 114(20):7029-36. PubMed ID: 20429600
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Simultaneous C7- and N1-prenylation of cyclo-L-Trp-L-Trp catalyzed by a prenyltransferase from Aspergillus oryzae.
    Zou HX; Xie XL; Linne U; Zheng XD; Li SM
    Org Biomol Chem; 2010 Jun; 8(13):3037-44. PubMed ID: 20473424
    [TBL] [Abstract][Full Text] [Related]  

  • 28. An enzyme catalyzing O-prenylation of the glucose moiety of fusicoccin A, a diterpene glucoside produced by the fungus Phomopsis amygdali.
    Noike M; Liu C; Ono Y; Hamano Y; Toyomasu T; Sassa T; Kato N; Dairi T
    Chembiochem; 2012 Mar; 13(4):566-73. PubMed ID: 22287087
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A soluble, magnesium-independent prenyltransferase catalyzes reverse and regular C-prenylations and O-prenylations of aromatic substrates.
    Haagen Y; Unsöld I; Westrich L; Gust B; Richard SB; Noel JP; Heide L
    FEBS Lett; 2007 Jun; 581(16):2889-93. PubMed ID: 17543953
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Breaking cyclic dipeptide prenyltransferase regioselectivity by unnatural alkyl donors.
    Liebhold M; Xie X; Li SM
    Org Lett; 2013 Jun; 15(12):3062-5. PubMed ID: 23721375
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Potential rearrangements in the reaction catalyzed by the indole prenyltransferase FtmPT1.
    Mahmoodi N; Tanner ME
    Chembiochem; 2013 Oct; 14(15):2029-37. PubMed ID: 24014462
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Role of substrate dynamics in protein prenylation reactions.
    Chakravorty DK; Merz KM
    Acc Chem Res; 2015 Feb; 48(2):439-48. PubMed ID: 25539152
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Identification of a brevianamide F reverse prenyltransferase BrePT from Aspergillus versicolor with a broad substrate specificity towards tryptophan-containing cyclic dipeptides.
    Yin S; Yu X; Wang Q; Liu XQ; Li SM
    Appl Microbiol Biotechnol; 2013 Feb; 97(4):1649-60. PubMed ID: 22660767
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Chromane derivatives of small aromatic molecules: Chemoenzymatic synthesis and growth inhibitory activity on human tumor cell line LoVo WT.
    Macone A; Lendaro E; Comandini A; Rovardi I; Matarese RM; Carraturo A; Bonamore A
    Bioorg Med Chem; 2009 Aug; 17(16):6003-7. PubMed ID: 19615911
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Theoretical study of the mechanism of proton transfer in the esterase EstB from Burkholderia gladioli.
    Chen L; Kong X; Liang Z; Ye F; Yu K; Dai W; Wu D; Luo C; Jiang H
    J Phys Chem B; 2011 Nov; 115(44):13019-25. PubMed ID: 21910435
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Chemoenzymatic syntheses of prenylated aromatic small molecules using Streptomyces prenyltransferases with relaxed substrate specificities.
    Kumano T; Richard SB; Noel JP; Nishiyama M; Kuzuyama T
    Bioorg Med Chem; 2008 Sep; 16(17):8117-26. PubMed ID: 18682327
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mechanistic studies on the indole prenyltransferases.
    Tanner ME
    Nat Prod Rep; 2015 Jan; 32(1):88-101. PubMed ID: 25270661
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Quantum mechanics/molecular mechanics minimum free-energy path for accurate reaction energetics in solution and enzymes: sequential sampling and optimization on the potential of mean force surface.
    Hu H; Lu Z; Parks JM; Burger SK; Yang W
    J Chem Phys; 2008 Jan; 128(3):034105. PubMed ID: 18205486
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Molecular basis for the broad substrate selectivity of a peptide prenyltransferase.
    Hao Y; Pierce E; Roe D; Morita M; McIntosh JA; Agarwal V; Cheatham TE; Schmidt EW; Nair SK
    Proc Natl Acad Sci U S A; 2016 Dec; 113(49):14037-14042. PubMed ID: 27872314
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Acceptor substrate determines donor specificity of an aromatic prenyltransferase: expanding the biocatalytic potential of NphB.
    Johnson BP; Scull EM; Dimas DA; Bavineni T; Bandari C; Batchev AL; Gardner ED; Nimmo SL; Singh S
    Appl Microbiol Biotechnol; 2020 May; 104(10):4383-4395. PubMed ID: 32189045
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.