These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
185 related articles for article (PubMed ID: 25020237)
41. Molecular simulations of imidazolium-based tricyanomethanide ionic liquids using an optimized classical force field. Vergadou N; Androulaki E; Hill JR; Economou IG Phys Chem Chem Phys; 2016 Mar; 18(9):6850-60. PubMed ID: 26878611 [TBL] [Abstract][Full Text] [Related]
42. Peptide-TiO2 surface interaction in solution by ab initio and molecular dynamics simulations. Carravetta V; Monti S J Phys Chem B; 2006 Mar; 110(12):6160-9. PubMed ID: 16553430 [TBL] [Abstract][Full Text] [Related]
43. Molecular dynamic simulation of dicationic ionic liquids: effects of anions and alkyl chain length on liquid structure and diffusion. Yeganegi S; Soltanabadi A; Farmanzadeh D J Phys Chem B; 2012 Sep; 116(37):11517-26. PubMed ID: 22897217 [TBL] [Abstract][Full Text] [Related]
44. Alkali cation extraction by calix[4]crown-6 to room-temperature ionic liquids. The effect of solvent anion and humidity investigated by molecular dynamics simulations. Sieffert N; Wipff G J Phys Chem A; 2006 Jan; 110(3):1106-17. PubMed ID: 16420015 [TBL] [Abstract][Full Text] [Related]
45. Solvation of Ln((III)) lanthanide cations in the [BMI][SCN], [MeBu(3)N][SCN], and [BMI](5)[Ln(NCS)(8)] ionic liquids: a molecular dynamics study. Chaumont A; Wipff G Inorg Chem; 2009 May; 48(10):4277-89. PubMed ID: 19425609 [TBL] [Abstract][Full Text] [Related]
46. Development of complex classical force fields through force matching to ab initio data: application to a room-temperature ionic liquid. Youngs TG; Del Pópolo MG; Kohanoff J J Phys Chem B; 2006 Mar; 110(11):5697-707. PubMed ID: 16539515 [TBL] [Abstract][Full Text] [Related]
47. Understanding the impact of the central atom on the ionic liquid behavior: phosphonium vs ammonium cations. Carvalho PJ; Ventura SP; Batista ML; Schröder B; Gonçalves F; Esperança J; Mutelet F; Coutinho JA J Chem Phys; 2014 Feb; 140(6):064505. PubMed ID: 24527930 [TBL] [Abstract][Full Text] [Related]
48. The effect of anion architecture on the lubrication chemistry of phosphonium orthoborate ionic liquids. Munavirov B; Black JJ; Shah FU; Leckner J; Rutland MW; Harper JB; Glavatskih S Sci Rep; 2021 Dec; 11(1):24021. PubMed ID: 34912003 [TBL] [Abstract][Full Text] [Related]
49. Molecular force field for ionic liquids IV: trialkylimidazolium and alkoxycarbonyl-imidazolium cations; alkylsulfonate and alkylsulfate anions. Lopes JN; Padua AA; Shimizu K J Phys Chem B; 2008 Apr; 112(16):5039-46. PubMed ID: 18380506 [TBL] [Abstract][Full Text] [Related]
51. Pyrazolium- versus imidazolium-based ionic liquids: structure, dynamics and physicochemical properties. Chiappe C; Sanzone A; Mendola D; Castiglione F; Famulari A; Raos G; Mele A J Phys Chem B; 2013 Jan; 117(2):668-76. PubMed ID: 23252760 [TBL] [Abstract][Full Text] [Related]
52. Low frequency vibrational modes of room temperature ionic liquids. Sarangi SS; Reddy SK; Balasubramanian S J Phys Chem B; 2011 Mar; 115(8):1874-80. PubMed ID: 21309507 [TBL] [Abstract][Full Text] [Related]
53. Force-field parameters of the Psi and Phi around glycosidic bonds to oxygen and sulfur atoms. Saito M; Okazaki I J Comput Chem; 2009 Dec; 30(16):2656-65. PubMed ID: 19396813 [TBL] [Abstract][Full Text] [Related]
54. Atomistic Force Field for Azobenzene Compounds Adapted for QM/MM Simulations with Applications to Liquids and Liquid Crystals. Böckmann M; Peter C; Site LD; Doltsinis NL; Kremer K; Marx D J Chem Theory Comput; 2007 Sep; 3(5):1789-802. PubMed ID: 26627622 [TBL] [Abstract][Full Text] [Related]
55. Molecular dynamics simulations of equilibrium and transport properties of amino acid-based room temperature ionic liquids. Sirjoosingh A; Alavi S; Woo TK J Phys Chem B; 2009 Jun; 113(23):8103-13. PubMed ID: 19453132 [TBL] [Abstract][Full Text] [Related]
56. Improved classical united-atom force field for imidazolium-based ionic liquids: tetrafluoroborate, hexafluorophosphate, methylsulfate, trifluoromethylsulfonate, acetate, trifluoroacetate, and bis(trifluoromethylsulfonyl)amide. Zhong X; Liu Z; Cao D J Phys Chem B; 2011 Aug; 115(33):10027-40. PubMed ID: 21751818 [TBL] [Abstract][Full Text] [Related]
58. Interactions in ion pairs of protic ionic liquids: comparison with aprotic ionic liquids. Tsuzuki S; Shinoda W; Miran MS; Kinoshita H; Yasuda T; Watanabe M J Chem Phys; 2013 Nov; 139(17):174504. PubMed ID: 24206313 [TBL] [Abstract][Full Text] [Related]
59. The Effect of Phenyl Substitutions on Microstructures and Dynamics of Tetraalkylphosphonium Bis(trifluoro- methylsulfonyl)imide Ionic Liquids. Wang YL; Li B; Laaksonen A; Yuan J Chemphyschem; 2020 Jun; 21(11):1202-1214. PubMed ID: 32181955 [TBL] [Abstract][Full Text] [Related]
60. Liquid structure of and Li+ ion solvation in bis(trifluoromethanesulfonyl)amide based ionic liquids composed of 1-ethyl-3-methylimidazolium and N-methyl-N-propylpyrrolidinium cations. Umebayashi Y; Hamano H; Seki S; Minofar B; Fujii K; Hayamizu K; Tsuzuki S; Kameda Y; Kohara S; Watanabe M J Phys Chem B; 2011 Oct; 115(42):12179-91. PubMed ID: 21961434 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]