These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
260 related articles for article (PubMed ID: 2502198)
1. Molecular dynamics of tryptophan in ribonuclease-T1. II. Correlations with fluorescence. Axelsen PH; Prendergast FG Biophys J; 1989 Jul; 56(1):43-66. PubMed ID: 2502198 [TBL] [Abstract][Full Text] [Related]
2. Molecular dynamics of tryptophan in ribonuclease-T1. I. Simulation strategies and fluorescence anisotropy decay. Axelsen PH; Haydock C; Prendergast FG Biophys J; 1988 Aug; 54(2):249-58. PubMed ID: 3145038 [TBL] [Abstract][Full Text] [Related]
3. Anisotropy decays of single tryptophan proteins measured by GHz frequency-domain fluorometry with collisional quenching. Lakowicz JR; Gryczynski I; Szmacinski H; Cherek H; Joshi N Eur Biophys J; 1991; 19(3):125-40. PubMed ID: 1647947 [TBL] [Abstract][Full Text] [Related]
4. Probing water environment of Trp59 in ribonuclease T1: insight of the structure-water network relationship. Chao WC; Shen JY; Lu JF; Wang JS; Yang HC; Wee K; Lin LJ; Kuo YC; Yang CH; Weng SH; Huang HC; Chen YH; Chou PT J Phys Chem B; 2015 Feb; 119(6):2157-67. PubMed ID: 25046564 [TBL] [Abstract][Full Text] [Related]
5. Molecular dynamics simulations of ribonuclease T1: comparison of the free enzyme and the 2' GMP-enzyme complex. MacKerell AD; Nilsson L; Rigler R; Heinemann U; Saenger W Proteins; 1989; 6(1):20-31. PubMed ID: 2558378 [TBL] [Abstract][Full Text] [Related]
6. Picosecond time-resolved fluorescence of ribonuclease T1. A pH and substrate analogue binding study. Chen LX; Longworth JW; Fleming GR Biophys J; 1987 Jun; 51(6):865-73. PubMed ID: 3038204 [TBL] [Abstract][Full Text] [Related]
7. Contribution of single tryptophan residues to the fluorescence and stability of ribonuclease Sa. Alston RW; Urbanikova L; Sevcik J; Lasagna M; Reinhart GD; Scholtz JM; Pace CN Biophys J; 2004 Dec; 87(6):4036-47. PubMed ID: 15377518 [TBL] [Abstract][Full Text] [Related]
8. 13C NMR and fluorescence analysis of tryptophan dynamics in wild-type and two single-Trp variants of Escherichia coli thioredoxin. Kemple MD; Yuan P; Nollet KE; Fuchs JA; Silva N; Prendergast FG Biophys J; 1994 Jun; 66(6):2111-26. PubMed ID: 8075345 [TBL] [Abstract][Full Text] [Related]
9. Protein dynamics. A time-resolved fluorescence, energetic and molecular dynamics study of ribonuclease T1. MacKerell AD; Rigler R; Nilsson L; Hahn U; Saenger W Biophys Chem; 1987 May; 26(2-3):247-61. PubMed ID: 3111558 [TBL] [Abstract][Full Text] [Related]
10. Tryptophan side chain electrostatic interactions determine edge-to-face vs parallel-displaced tryptophan side chain geometries in the designed beta-hairpin "trpzip2". Guvench O; Brooks CL J Am Chem Soc; 2005 Apr; 127(13):4668-74. PubMed ID: 15796532 [TBL] [Abstract][Full Text] [Related]
11. Crystal structures of ribonuclease F1 of Fusarium moniliforme in its free form and in complex with 2'GMP. Vassylyev DG; Katayanagi K; Ishikawa K; Tsujimoto-Hirano M; Danno M; Pähler A; Matsumoto O; Matsushima M; Yoshida H; Morikawa K J Mol Biol; 1993 Apr; 230(3):979-96. PubMed ID: 8386773 [TBL] [Abstract][Full Text] [Related]
12. Electronic transitions in molecules in static external fields. I. Indole and Trp-59 in ribonuclease T1. Ilich P; Axelsen PH; Prendergast FG Biophys Chem; 1988 Apr; 29(3):341-9. PubMed ID: 3134060 [TBL] [Abstract][Full Text] [Related]
13. Environment of tryptophan side chains in proteins. Samanta U; Pal D; Chakrabarti P Proteins; 2000 Feb; 38(3):288-300. PubMed ID: 10713989 [TBL] [Abstract][Full Text] [Related]
14. Fluorescence lifetime quenching and anisotropy studies of ribonuclease T1. James DR; Demmer DR; Steer RP; Verrall RE Biochemistry; 1985 Sep; 24(20):5517-26. PubMed ID: 3935161 [TBL] [Abstract][Full Text] [Related]
15. Engineering out motion: a surface disulfide bond alters the mobility of tryptophan 22 in cytochrome b5 as probed by time-resolved fluorescence and 1H NMR experiments. Storch EM; Grinstead JS; Campbell AP; Daggett V; Atkins WM Biochemistry; 1999 Apr; 38(16):5065-75. PubMed ID: 10213609 [TBL] [Abstract][Full Text] [Related]
16. Tryptophan conformations associated with partial unfolding in ribonuclease T1. Moors SL; Jonckheer A; De Maeyer M; Engelborghs Y; Ceulemans A Biophys J; 2009 Sep; 97(6):1778-86. PubMed ID: 19751684 [TBL] [Abstract][Full Text] [Related]
17. Molecular dynamics simulations of ribonuclease T1: analysis of the effect of solvent on the structure, fluctuations, and active site of the free enzyme. MacKerell AD; Nilsson L; Rigler R; Saenger W Biochemistry; 1988 Jun; 27(12):4547-56. PubMed ID: 3139027 [TBL] [Abstract][Full Text] [Related]
18. Solvent effects on the fluorescence quenching of tryptophan by amides via electron transfer. Experimental and computational studies. Muiño PL; Callis PR J Phys Chem B; 2009 Mar; 113(9):2572-7. PubMed ID: 18672928 [TBL] [Abstract][Full Text] [Related]
19. Structure of a rapidly formed intermediate in ribonuclease T1 folding. Kiefhaber T; Schmid FX; Willaert K; Engelborghs Y; Chaffotte A Protein Sci; 1992 Sep; 1(9):1162-72. PubMed ID: 1304394 [TBL] [Abstract][Full Text] [Related]
20. Folding of RNase T1 is decelerated by a specific tertiary contact in a folding intermediate. Kiefhaber T; Grunert HP; Hahn U; Schmid FX Proteins; 1992 Feb; 12(2):171-9. PubMed ID: 1603806 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]